Abstract
A formal understanding of processes that result from the interaction of multiple elements is hardly possible without mathematical models of system dynamics. This is important in neuroscience, particularly in neuroimaging, where inference on causal mechanisms in neural systems, for example, effective connectivity, requires a model-based approach. Here, we focus on a Bayesian framework for inferring effective connectivity from functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM). DCM is a generative model of fMRI data which links hidden neural activity via a biophysical forward model to measured data. Bayesian inversion provides both the parameter distributions of the model parameters and (an approximation to) the model evidence; the latter provides a principled basis for model selection. Following a methodological discussion of DCM, we conclude with an outline of its potential use for clinical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aertsen A, Preißl H (1991) Dynamics of activity and connectivity in physiological neuronal Networks. In: Schuster HG (ed) Non linear dynamics and neuronal networks. VCH, New York, pp 281–302
Allen P, Stephan KE, Mechelli A, Day F, Ward N, Dalton J, Williams S, McGuire P (2010) Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage 49:947–955
Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013
Bernal-Casas D, Balaguer-Ballester E, Gerchen MF, Iglesias S, Walter H, Heinz A, Meyer-Lindenberg A, Stephan KE, Kirsch P (2013) Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by stochastic DCM. Neuroimage 82:555–563
Bossel H (1992) Modellbildung und Simulation. Vieweg, Braunschweig
Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann JM, Stephan KE (2011) Generative embedding for model-based classification of fMRI data. PLoS Comput Biol 7:e1002079
Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014) Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin 4:98–111
Büchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7:768–778
Bullmore ET, Horwitz B, Honey G, Brammer M, Williams S, Sharma T (2000) How good is good enough in path analysis of fMRI data? NeuroImage 11:289–301
Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Res Med 39:855–864
Daunizeau J, Friston KJ, Kiebel SJ (2009). Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 238(21):2089–2118
Daunizeau J, David O, Stephan KE (2010) Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage 58:312–322
Daunizeau J, Stephan KE, Friston KJ (2012a) Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? Neuroimage 62:464–481
Daunizeau J, Lemieux L, Vaudano AE, Friston KJ, Stephan KE (2012b) An electrophysiological validation of stochastic DCM for fMRI. Front Comput Neurosci 6:103
David O (2010) fMRI connectivity, meaning and empiricism. Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage 58:306–309
David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 30:1255–1272
David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6:2683–2697
den Ouden HEM, Friston KJ, Daw ND, McIntosh AR, Stephan KE (2009) A dual role for prediction error in associative learning. Cereb Cortex 19:1175–1185
den Ouden HEM, Daunizeau J, Roiser JP, Friston KJ, Stephan KE (2010) Striatal prediction error modulates cortical coupling. J Neurosci 30:3210–3219
Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapp 2:56–78
Friston KJ (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Ann Rev Neurosci 25:221–250
Friston KJ (2008) Variational filtering. NeuroImage 41:747–766
Friston KJ (2009) The free-energy principle: a rough guide to the brain? Trends Cogn Sci 13:293–301
Friston K (2011a) Dynamic causal modeling and Granger causality. Comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58:303–305
Friston KJ (2011b) Functional and effective connectivity: a review. Brain Connect 1:13–36
Friston KJ, Ungerleider LG, Jezzard P, Turner R (1995) Characterizing modulatory interactions between areas V1 and V2 in human cortex: a new treatment of functional MRI data. Hum Brain Mapp 2:211–224
Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12:466–477
Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302
Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner A, Penny WD (2007) Variational free energy and the Laplace approximation. NeuroImage 34:220–234
Friston KJ, Trujillo-Barreto N, Daunizeau J (2008) DEM: a variational treatment of dynamic systems. NeuroImage 41:849–885
Friston K, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Math Probl Eng 2010:621670
Friston K, Moran R, Seth AK (2013) Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 23:172–178
Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830
Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Res Imag 21:1251–1261
Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246
Grol MJ, Majdandzic J, Stephan KE, Verhagen L, Dijkerman C, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually-guided grasping. J Neurosci 27:11877–11887
Harrison LM, Penny W, Friston KJ (2003) Multivariate autoregressive modeling of fMRI time series. NeuroImage 19:1477–1491
Havlicek M, Friston KJ, Jan J, Brazdil M, Calhoun VD (2011) Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering. Neuroimage 56:2109–2128
Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245
Horwitz B, Rumsey JM, Donohue BC (1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 95:8939–8944
Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med 2:341–355
Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-subject analyses with dynamic causal modeling. NeuroImage 49:3065–3074
Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795
Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30:1273–1284
Kiebel SJ, Klöppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34:1487–1496
Kumar S, Stephan KE, Warren JD, Friston KJ, Griffiths TD (2007) Hierarchical processing of auditory objects in humans. PLoS Comput Biol 3:e100
Lee L, Friston K, Horwitz B (2006) Large-scale neural models and dynamic causal modelling. NeuroImage 30:1243–1254
Leff AP, Schofield AM, Stephan KE, Crinion JT, Friston KJ, Price CJ (2008) The cortical dynamics of intelligible speech. J Neurosci 28:13209–13215
Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K (2011) Generalised filtering and stochastic DCM for fMRI. Neuroimage 58:442–457
Li B, Wang X, Yao S, Hu D, Friston K (2012) Task-dependent modulation of effective connectivity within the default mode network. Front Psychol 3:206
MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge
Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:269–278
Marrelec G, Kim J, Doyon J, Horwitz B (2009) Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI. Hum Brain Mapp 30(3):941–950
McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13:861–870
McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22
McIntosh AR, Lobaugh NJ (2004) Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23:23S250–S263
McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B (1994) Network analysis of cortical visual pathways mapped with PET. J Neurosci 14:655–666
McIntosh AR, Rajah MN, Lobaugh NJ (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J Neurosci 23:6520–6528
Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947
Moran RJ, Symmonds M, Stephan KE, Friston KJ, Dolan RJ (2011) An in vivo assay of synaptic function mediating human cognition. Curr Biol 21:1320–1325
Neal RM, Hinton GE (1998) A view of the EM algorithm that justifies incremental sparse and other variants. In: Jordan MI (ed) Learning in graphical models. Kluwer Academic, Dordrecht
Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616
Penny WD (2012) Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage 59:319–330
Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. NeuroImage 22:1157–1172
Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of dynamic Causal Models. PLoS Comput Biol 6:e1000709
Pitt MA, Myung IJ (2002) When a good fit can be bad. Trends Cogn Sci 6:421–425
Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C (2010) Six problems for causal inference from fMRI. Neuroimage 49:1545–1558
Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87
Reyt S, Picq C, Sinniger V, Clarençon D, Bonaz B, David O (2010) Dynamic causal modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. Neuroimage 52(4):1456–1464
Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies—revisited. Neuroimage 84:971–985
Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25:230–242
Roebroeck A, Formisano E, Goebel R (2011) The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58:296–302
Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440
Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500
Seth AK, Chorley P, Barnett LC (2013) Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65:540–555
Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2010) Network modelling methods for fMRI. Neuroimage 54:875–891
Sonty SP, Mesulam MM, Weintraub S, Johnson NA, Parrish TB, Gitelman DR (2007) Altered effective connectivity within the language network in primary progressive aphasia. J Neurosci 27:1334–1345
Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141
Stephan KE (2004) On the role of general system theory for functional neuroimaging. J Anat 205:443–470
Stephan KE, Mathys C (2014). Computational approaches to psychiatry. Curr Opin Neurobiol 25:85–92
Stephan KE, Roebroeck A (2012) A short history of causal modeling of fMRI data. Neuroimage 62:856–863
Stephan KE, Kamper L, Bozkurt A, Burns GAPC, Young MP, Kötter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil Trans R Soc Lond B Biol Sci 356:1159–1186
Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629–635
Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ (2005) Investigating the functional role of callosal connections with dynamic causal models. Ann NY Acad Sci 1064:16–36
Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007a) Comparing hemodynamic models with DCM. NeuroImage 38:387–401
Stephan KE, Marshall JC, Penny WD, Friston KJ, Fink GR (2007b) Inter-hemispheric integration of visual processing during task-driven lateralization. J Neurosci 27:3512–3522
Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HEM, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649–662
Stephan KE, Tittgemeyer M, Knosche TR, Moran RJ, Friston KJ (2009a) Tractography-based priors for dynamic causal models. NeuroImage 47:1628–1638
Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009b) Bayesian model selection for group studies. NeuroImage 46:1004–1017
Stephan KE, Friston KJ, Frith CD (2009c) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527
Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for dynamic causal modelling. NeuroImage 49:3099–3109
Summerfield C, Koechlin E (2008) A neural representation of prior information during perceptual inference. Neuron 59:336–347
Uludağ K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165
Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58:339–361
von Bertalanffy L (1969) General system theory. George Braziller, New York
Wang XJ, Krystal JH (2014) Computational psychiatry. Neuron 84:638–654
Yamashita O, Galka A, Ozaki T, Biscay R, Valdes-Sosa P (2004) Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Hum Brain Mapp 21:221–235
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer New York
About this chapter
Cite this chapter
Stephan, K., Li, B., Iglesias, S., Friston, K. (2015). Inferring Effective Connectivity from fMRI Data. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_13
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7591-1_13
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7590-4
Online ISBN: 978-1-4899-7591-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)