Skip to main content

Inferring Effective Connectivity from fMRI Data

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

  • 3470 Accesses

Abstract

A formal understanding of processes that result from the interaction of multiple elements is hardly possible without mathematical models of system dynamics. This is important in neuroscience, particularly in neuroimaging, where inference on causal mechanisms in neural systems, for example, effective connectivity, requires a model-based approach. Here, we focus on a Bayesian framework for inferring effective connectivity from functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM). DCM is a generative model of fMRI data which links hidden neural activity via a biophysical forward model to measured data. Bayesian inversion provides both the parameter distributions of the model parameters and (an approximation to) the model evidence; the latter provides a principled basis for model selection. Following a methodological discussion of DCM, we conclude with an outline of its potential use for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aertsen A, Preißl H (1991) Dynamics of activity and connectivity in physiological neuronal Networks. In: Schuster HG (ed) Non linear dynamics and neuronal networks. VCH, New York, pp 281–302

    Google Scholar 

  • Allen P, Stephan KE, Mechelli A, Day F, Ward N, Dalton J, Williams S, McGuire P (2010) Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage 49:947–955

    Article  PubMed Central  PubMed  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernal-Casas D, Balaguer-Ballester E, Gerchen MF, Iglesias S, Walter H, Heinz A, Meyer-Lindenberg A, Stephan KE, Kirsch P (2013) Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by stochastic DCM. Neuroimage 82:555–563

    Article  CAS  PubMed  Google Scholar 

  • Bossel H (1992) Modellbildung und Simulation. Vieweg, Braunschweig

    Google Scholar 

  • Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann JM, Stephan KE (2011) Generative embedding for model-based classification of fMRI data. PLoS Comput Biol 7:e1002079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014) Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin 4:98–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Büchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7:768–778

    Article  PubMed  Google Scholar 

  • Bullmore ET, Horwitz B, Honey G, Brammer M, Williams S, Sharma T (2000) How good is good enough in path analysis of fMRI data? NeuroImage 11:289–301

    Article  CAS  PubMed  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Res Med 39:855–864

    Article  CAS  Google Scholar 

  • Daunizeau J, Friston KJ, Kiebel SJ (2009). Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 238(21):2089–2118

    Article  PubMed Central  PubMed  Google Scholar 

  • Daunizeau J, David O, Stephan KE (2010) Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage 58:312–322

    Article  Google Scholar 

  • Daunizeau J, Stephan KE, Friston KJ (2012a) Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? Neuroimage 62:464–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daunizeau J, Lemieux L, Vaudano AE, Friston KJ, Stephan KE (2012b) An electrophysiological validation of stochastic DCM for fMRI. Front Comput Neurosci 6:103

    PubMed Central  CAS  PubMed  Google Scholar 

  • David O (2010) fMRI connectivity, meaning and empiricism. Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage 58:306–309

    Article  Google Scholar 

  • David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 30:1255–1272

    Article  PubMed  Google Scholar 

  • David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6:2683–2697

    Article  CAS  PubMed  Google Scholar 

  • den Ouden HEM, Friston KJ, Daw ND, McIntosh AR, Stephan KE (2009) A dual role for prediction error in associative learning. Cereb Cortex 19:1175–1185

    Article  Google Scholar 

  • den Ouden HEM, Daunizeau J, Roiser JP, Friston KJ, Stephan KE (2010) Striatal prediction error modulates cortical coupling. J Neurosci 30:3210–3219

    Article  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapp 2:56–78

    Google Scholar 

  • Friston KJ (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Ann Rev Neurosci 25:221–250

    Google Scholar 

  • Friston KJ (2008) Variational filtering. NeuroImage 41:747–766

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (2009) The free-energy principle: a rough guide to the brain? Trends Cogn Sci 13:293–301

    Article  PubMed  Google Scholar 

  • Friston K (2011a) Dynamic causal modeling and Granger causality. Comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58:303–305

    Google Scholar 

  • Friston KJ (2011b) Functional and effective connectivity: a review. Brain Connect 1:13–36

    Article  PubMed  Google Scholar 

  • Friston KJ, Ungerleider LG, Jezzard P, Turner R (1995) Characterizing modulatory interactions between areas V1 and V2 in human cortex: a new treatment of functional MRI data. Hum Brain Mapp 2:211–224

    Article  Google Scholar 

  • Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12:466–477

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner A, Penny WD (2007) Variational free energy and the Laplace approximation. NeuroImage 34:220–234

    Article  PubMed  Google Scholar 

  • Friston KJ, Trujillo-Barreto N, Daunizeau J (2008) DEM: a variational treatment of dynamic systems. NeuroImage 41:849–885

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Math Probl Eng 2010:621670

    Article  Google Scholar 

  • Friston K, Moran R, Seth AK (2013) Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 23:172–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830

    Article  CAS  PubMed  Google Scholar 

  • Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Res Imag 21:1251–1261

    Article  Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246

    Article  PubMed  Google Scholar 

  • Grol MJ, Majdandzic J, Stephan KE, Verhagen L, Dijkerman C, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually-guided grasping. J Neurosci 27:11877–11887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison LM, Penny W, Friston KJ (2003) Multivariate autoregressive modeling of fMRI time series. NeuroImage 19:1477–1491

    Article  CAS  PubMed  Google Scholar 

  • Havlicek M, Friston KJ, Jan J, Brazdil M, Calhoun VD (2011) Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering. Neuroimage 56:2109–2128

    Article  PubMed Central  PubMed  Google Scholar 

  • Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horwitz B, Rumsey JM, Donohue BC (1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 95:8939–8944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med 2:341–355

    Article  Google Scholar 

  • Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-subject analyses with dynamic causal modeling. NeuroImage 49:3065–3074

    Article  PubMed Central  PubMed  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30:1273–1284

    Article  PubMed  Google Scholar 

  • Kiebel SJ, Klöppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34:1487–1496

    Article  Google Scholar 

  • Kumar S, Stephan KE, Warren JD, Friston KJ, Griffiths TD (2007) Hierarchical processing of auditory objects in humans. PLoS Comput Biol 3:e100

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee L, Friston K, Horwitz B (2006) Large-scale neural models and dynamic causal modelling. NeuroImage 30:1243–1254

    Article  PubMed  Google Scholar 

  • Leff AP, Schofield AM, Stephan KE, Crinion JT, Friston KJ, Price CJ (2008) The cortical dynamics of intelligible speech. J Neurosci 28:13209–13215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K (2011) Generalised filtering and stochastic DCM for fMRI. Neuroimage 58:442–457

    Article  PubMed  Google Scholar 

  • Li B, Wang X, Yao S, Hu D, Friston K (2012) Task-dependent modulation of effective connectivity within the default mode network. Front Psychol 3:206

    Article  PubMed Central  PubMed  Google Scholar 

  • MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  • Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:269–278

    Article  CAS  PubMed  Google Scholar 

  • Marrelec G, Kim J, Doyon J, Horwitz B (2009) Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI. Hum Brain Mapp 30(3):941–950

    Article  CAS  PubMed  Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13:861–870

    Article  CAS  PubMed  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Article  Google Scholar 

  • McIntosh AR, Lobaugh NJ (2004) Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23:23S250–S263

    Article  Google Scholar 

  • McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B (1994) Network analysis of cortical visual pathways mapped with PET. J Neurosci 14:655–666

    CAS  PubMed  Google Scholar 

  • McIntosh AR, Rajah MN, Lobaugh NJ (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J Neurosci 23:6520–6528

    Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    CAS  PubMed  Google Scholar 

  • Moran RJ, Symmonds M, Stephan KE, Friston KJ, Dolan RJ (2011) An in vivo assay of synaptic function mediating human cognition. Curr Biol 21:1320–1325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neal RM, Hinton GE (1998) A view of the EM algorithm that justifies incremental sparse and other variants. In: Jordan MI (ed) Learning in graphical models. Kluwer Academic, Dordrecht

    Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616

    Article  CAS  PubMed  Google Scholar 

  • Penny WD (2012) Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage 59:319–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. NeuroImage 22:1157–1172

    Article  CAS  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of dynamic Causal Models. PLoS Comput Biol 6:e1000709

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitt MA, Myung IJ (2002) When a good fit can be bad. Trends Cogn Sci 6:421–425

    Article  PubMed  Google Scholar 

  • Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C (2010) Six problems for causal inference from fMRI. Neuroimage 49:1545–1558

    Article  CAS  PubMed  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    Article  CAS  PubMed  Google Scholar 

  • Reyt S, Picq C, Sinniger V, Clarençon D, Bonaz B, David O (2010) Dynamic causal modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. Neuroimage 52(4):1456–1464

    Article  PubMed  Google Scholar 

  • Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies—revisited. Neuroimage 84:971–985

    Article  CAS  PubMed  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25:230–242

    Article  PubMed  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2011) The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58:296–302

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500

    Article  CAS  PubMed  Google Scholar 

  • Seth AK, Chorley P, Barnett LC (2013) Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65:540–555

    Article  PubMed  Google Scholar 

  • Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2010) Network modelling methods for fMRI. Neuroimage 54:875–891

    Article  PubMed  Google Scholar 

  • Sonty SP, Mesulam MM, Weintraub S, Johnson NA, Parrish TB, Gitelman DR (2007) Altered effective connectivity within the language network in primary progressive aphasia. J Neurosci 27:1334–1345

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE (2004) On the role of general system theory for functional neuroimaging. J Anat 205:443–470

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Mathys C (2014). Computational approaches to psychiatry. Curr Opin Neurobiol 25:85–92

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Roebroeck A (2012) A short history of causal modeling of fMRI data. Neuroimage 62:856–863

    Article  PubMed  Google Scholar 

  • Stephan KE, Kamper L, Bozkurt A, Burns GAPC, Young MP, Kötter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil Trans R Soc Lond B Biol Sci 356:1159–1186

    Article  CAS  Google Scholar 

  • Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629–635

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ (2005) Investigating the functional role of callosal connections with dynamic causal models. Ann NY Acad Sci 1064:16–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007a) Comparing hemodynamic models with DCM. NeuroImage 38:387–401

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Marshall JC, Penny WD, Friston KJ, Fink GR (2007b) Inter-hemispheric integration of visual processing during task-driven lateralization. J Neurosci 27:3512–3522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HEM, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649–662

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Tittgemeyer M, Knosche TR, Moran RJ, Friston KJ (2009a) Tractography-based priors for dynamic causal models. NeuroImage 47:1628–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009b) Bayesian model selection for group studies. NeuroImage 46:1004–1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Friston KJ, Frith CD (2009c) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for dynamic causal modelling. NeuroImage 49:3099–3109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Summerfield C, Koechlin E (2008) A neural representation of prior information during perceptual inference. Neuron 59:336–347

    Article  CAS  PubMed  Google Scholar 

  • UludaÄŸ K, Muller-Bierl B, UÄŸurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  • Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58:339–361

    Article  PubMed Central  PubMed  Google Scholar 

  • von Bertalanffy L (1969) General system theory. George Braziller, New York

    Google Scholar 

  • Wang XJ, Krystal JH (2014) Computational psychiatry. Neuron 84:638–654

    Article  CAS  PubMed  Google Scholar 

  • Yamashita O, Galka A, Ozaki T, Biscay R, Valdes-Sosa P (2004) Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Hum Brain Mapp 21:221–235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas E. Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Stephan, K., Li, B., Iglesias, S., Friston, K. (2015). Inferring Effective Connectivity from fMRI Data. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_13

Download citation

Publish with us

Policies and ethics