Abstract
Chapter 7 Electron ionization (EI) is the gold standard in analyte ionization by mass spectrometry (MS). As an alternative to EI, a wide variety of alternative ionization techniques have been developed. A characteristic feature of these ionization techniques is that often even-electron ions are generated as a result of ion attachment processes. In these ion attachment processes, generally only very little energy transfer is involved. As a result, ions related to the intact analyte molecule are generated with little fragment ions (soft ionization techniques). Next to the generation of protonated molecules ([M+H]+) by attachment of a proton, attachment of other cations, e.g., Alkali+-ions as well as other metal ions, may also be observed. This chapter discusses condensed-phase ionization techniques from the perspective of Alkali+-ion attachment mass spectrometry. Thus, attention is paid to liquid-phase ionization techniques, i.e., thermospray ionization (TSI) and electrospray ionization (ESI), and solid-phase ionization or desorption/ionization techniques, including field desorption (FDI), fast-atom bombardment (FAB), and matrix-assisted laser desorption ionization (MALDI). Application of Alkali+-cationization in these condensed-phase ionization techniques are discussed in the areas of small molecule analysis as well as tin the analysis of glycosides, sugars, glycans and oligosaccharides, lipids and phospholipids, peptides and proteins, oligonucleotides, and synthetic polymers. Differences in fragmentation between protonated and Alkali+- cationized molecules are highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39:1091–112.
Pittenauer E, Allmaier G. High-energy collision induced dissociation of biomolecules: MALDI-TOF/RTOF mass spectrometry in comparison to tandem sector mass spectrometry. Comb Chem High Throughput Screen. 2009;12:137–55.
Teesch LM, Adams J. Metal ions as special reagents in analytical mass spectrometry. Org Mass Spectrom. 1992;27:931–43.
Beckey HD. Field ionization mass spectrometry. Res/Dev. 1969;20(11):26.
Beckey HD. Principles of field ionization and field desorption mass spectrometry. Oxford: Pergamon; 1977. ISBN 0080206123.
Lattimer RP, Schulten H-R. Field ionization and field desorption mass spectrometry: past, present, and future. Anal Chem. 1989;61:1201A–15.
Linden HB. Liquid injection field desorption ionization: a new tool for soft ionization of samples including air-sensitive catalysts and non-polar hydrocarbons. Eur. J Mass Spectrom. 2004;10:459–68.
Smith DF, Schaub TM, Rodgers RP, Hendrickson CL, Marshall AG. Automated liquid injection field desorption/ionization for Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2008;80:7379–82.
Gross JH, Nieth N, Linden HB, Blumbach U, Richter FJ, Tauchert ME, Tompers R, Hofmann P. Liquid injection field desorption/ionization of reactive transition metal complexes. Anal Bioanal Chem. 2006;386:52–8.
Słomińska B, Chaładaj W, Danikiewicz W. Assessment of the various ionization methods in the analysis of metal salen complexes by mass spectrometry. J Mass Spectrom. 2014;49:392–9.
Gross JH. Liquid injection field desorption/ionization-mass spectrometry of ionic liquids. J Am Soc Mass Spectrom. 2007;18:2254–62.
Gross JH, Vékey K, Dallos A. Field desorption mass spectrometry of large multiply branched saturated hydrocarbons. J Mass Spectrom. 2001;36:522–8.
Qian K, Edwards KE, Siskin M, Olmstead WN, Mennito AS, Dechert GJ, Hoosain NE. Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy Fuels. 2007;21:1042–7.
Schaub TM, Rodgers RP, Marshall AG, Qian K, Green LA, Olmstead WN. Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry. Energy Fuels. 2005;19:1566–73.
Schulten HR, Bahr U, Monkhouse PB. Biochemical application of field desorption mass spectrometry. J Biochem Biophys Methods. 1983;8:239–69.
Schulten HR. Off-line combination of liquid chromatography and field desorption mass spectrometry: principles and environmental, medical and pharmaceutical applications. J Chromatogr. 1982;251:105–28.
Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Whalley ET. Fast atom bombardment mass spectrometry of bradykinin and related oligopeptides. Biomed. Mass Spectrom. 1981;8:337–42.
Morris HR, Panico M, Barber M, Bordoli RS, Sedgwick RD, Tyler A. Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Commun. 1981;101:623–31.
Bélanger J, Paré JRJ. Fast atom bombardment mass spectrometry in the pharmaceutical analysis of drugs. J Pharm Biomed Anal. 1986;4:415–41.
Fenselau C, Cotter RJ. Chemical aspects of fast atom bombardment. Chem Rev. 1987;87:501–12.
Benninghoven A, Rudenauer FG, Werner HW. Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. Chichester: Wiley; 1986. ISBN 3540162631.
Cook KD, Todd PJ, Friar DH. Physical properties of matrices used for fast atom bombardment. Biomed Environ Mass Spectrom. 1989;18:492–7.
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100 000 by laser ionization TOF-MS. Rapid Commun Mass Spectrom. 1988;2:151–3.
Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem. 1988;60:2299–301.
Karas M, Bahr U, Ingendoh A, Nordhoff E, Stahl B, Strupat K, Hillenkamp F. Principles and applications of matrix-assisted UV laser desorption ionization mass spectrometry. Anal Chim Acta. 1990;241:175–85.
Mann. M, Talbo G. Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. Curr Opin Biotechnol. 1996;7:11–9.
Karas M. Matrix-assisted laser desorption ionization mass spectrometry: a progress report. Biochem Soc Trans. 1996;24:897–900.
Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta. 2003;337:11–21.
Knochenmuss R. Ion formation mechanisms in UV-MALDI. Analyst. 2006;131:966–86.
Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395–426.
Angel PM, Caprioli RM. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry. 2013;52:3818–28.
Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603.
Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.
Grade H, Cooks RG. Secondary ion mass spectrometry. Cationization of organic molecules with metals. J Am Chem Soc. 1978;100:5615–21.
MacFarlane RD, Torgerson DF. Californium-252 plasma desorption mass spectroscopy. Science. 1976;191:920–5.
Cotter RJ. Plasma desorption mass spectrometry: coming of age. Anal Chem. 1988;60:781A–91.
Sundqvist B, Macfarlane R.D. 252Cf-Plasma desorption mass spectrometry. Mass Spectrom Rev. 1985;4:421–60.
Blakley CR, McAdams MJ, Vestal ML. Crossed-beam liquid chromatograph-mass spectrometer combination. J Chromatogr. 1978;158:261–76.
Blakley CR, Carmody JJ, Vestal ML. Liquid chromatograph-mass spectrometer for analysis of nonvolatile samples. Anal Chem. 1980;52:1636–41.
Vestal ML, Fergusson GJ. Thermospray liquid chromatograph/mass spectrometer interface with direct electrical heating of the capillary. Anal Chem. 1985;57:2373–8.
Arpino PJ. Combined liquid chromatography mass spectrometry. Part II. Techniques and mechanisms of thermospray. Mass Spectrom Rev. 1990;9:631–69.
Arpino PJ. Combined liquid chromatography mass spectrometry. Part III. Applications of thermospray. Mass Spectrom Rev. 1992;11:3–40.
Gáspár A, Berndt H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)— a simple method for trace element determination with microsamples in the μg/l concentration range. Spectrochim Acta B. 2000;55:587–97.
Blakley CR, Carmody JJ, Vestal ML. A new soft ionization technique for mass spectrometry of complex molecules. J Am Chem Soc. 1980;102:5931–3.
Blakley CR, Vestal ML. Thermospray interface for liquid chromatography/mass spectrometry. Anal Chem. 1983;55:750–4.
Katta V, Rockwood AL, Vestal ML. Field limit for ion evaporation from charged thermospray droplets. Int J Mass Spectrom Ion Proc. 1991;103:129–48.
Dole M, Hines RL, Mack LL, Mobley RC, Ferguson LD, Alice MB. Molecular beams of macroions. J Chem Phys. 1968;49:2240–9.
Gieniec J, Mack LL, Nakamae K, Gupta C, Kumar V, Dole M. Electrospray mass spectroscopy of macromolecules: application of an ion-drift spectrometer. Biomed Mass Spectrom. 1984;11:259–68.
Yamashita M, Fenn JB. Electrospray ion source. Another variation of the free-jet theme. J Phys Chem. 1984;88:4451–9.
Yamashita M, Fenn JB. Negative ion production with the electrospray ion source. J Phys Chem. 1984;88:4671–5.
Simons DS, Colby BN, Evans CA Jr. Electrohydrodynamic ionization mass spectrometry—the ionization of liquid glycerol and non-volatile organic solutes. Int J Mass Spectrom Ion Phys. 1974;15:291–302.
Stimpson BP, Evans CA Jr Electrohydrodynamic ionization mass spectrometry of biochemical materials. Biomed Mass Spectrom. 1978;5:52–63.
Zolotai NB, Karpov GV, Tal’roze VL, Skurat VE, Ramendik GI, Basyuta YuV. Mass spectrometry of the field evaporation of ions from liquid solutions in glycerol. J Anal Chem USSR. 1980;35:937–42.
Zolotai NB, Karpov GV, Tal’roze VL, Skurat VE, Basyuta YuV, Ramendik GI. Mass spectrometry of the field evaporation of ions from water and aqueous solutions, aqueous sodium iodide and saccharose solutions. J Anal Chem USSR. 1980;35:1161–74.
Cook KD. Electrohydrodynamic mass spectrometry. Mass Spectrom Rev. 1986;5:467–519.
Iribarne JV, Thomson BA. On the evaporation of small ions from charged droplets. J Chem Phys. 1976;64:2287–94.
Thomson BA, Iribarne JV. Field-induced ion evaporation from liquid surfaces at atmospheric pressure. J Chem Phys. 1979;71:4451–63.
Thomson BA, Iribarne JV, Dziedzic PJ. Liquid ion evaporation/mass spectrometry/mass spectrometry for the detection of polar and labile molecules. Anal Chem. 1982;54:2219–24.
Iribarne JV, Dziedzic PJ, Thomson BA. Atmospheric pressure ion evaporation-mass spectrometry. Int J Mass Spectrom Ion Phys. 1983;50:331–47.
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization—principles and practice. Mass Spectrom Rev. 1990;9:37–70.
Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20:362–87.
Smith RD, Light-Wahl KJ. The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: promise, pitfalls and prognosis. Biol Mass Spectrom. 1993;22:493–501.
Huang MZ, Yuan CH, Cheng SC, Cho YT, Shiea J. Ambient ionization mass spectrometry. Annu Rev Anal Chem. 2010;3:43–65.
Mortier KA, Zhang G-F, Van Peteghem CH, Lambert WE. Adduct formation in quantitative bioanalysis: effect of ionization conditions on paclitaxel. J Am Soc Mass Spectrom. 2004;15:585–92.
Kelly RT, Tolmachev AV, Page JS, Tang K, Smith RD. The ion funnel: theory, implementations, and applications. Mass Spectrom Rev. 2010;29:294–312.
Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004;18:2401–14.
Lorenzen K, van Duijn E. Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci. 2010;62:17.12.1–17.
Wilm MS, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem. 1996;68:1–8.
Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem. 2005;77:527–33.
Bayer E, Gfrörer P, Rentel C. Coordination-ionspray-MS (CIS-MS), a universal detection and characterization method for direct coupling with separation techniques. Angew Chem Int Ed. 1997;38:992–5.
Carroll DI, Dzidic I, Stillwell RN, Haegele KD, Horning EC. Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatography-mass spectrometry-computer analytical system. Anal Chem. 1975;47:2369–73.
Carroll DI, Dzidic I, Horning EC, Stillwell RN. Atmospheric-pressure ionization mass spectrometry. Appl Spectrosc Re. 1981;v. 17:337–406.
Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28:870–97.
Bos SJ, van Leeuwen SM, Karst U. From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal Bioanal Chem. 2006;384:85–99.
Robb DB, Blades MW. State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal Chim Acta. 2008;627:34–49.
Van Berkel GJ, Pasilis SP, Ovchinnikova O. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom. 2008;43:1161–80.
Takáts Z, Wiseman JM, Cooks RG. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry. and biology. J Mass Spectrom. 2005;40:1261–75.
Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32:218–43.
Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72:652–7.
Moyer SC, Cotter RJ. Atmospheric-pressure MALDI. Anal Chem. 2002;74:468A–476A.
Creaser CS, Ratcliffe L. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry: a review. Curr Anal Chem. 2006;2:9–15.
Laiko VV, Moyer SC, Cotter RJ. Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem. 2000;72:5239–43.
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.
McEwen CN, McKay RG, Larsen BS. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commerical LC/MS instruments. Anal Chem. 2005;77:7826–31.
Hirabayashi A, Sakairi M, Koizumi H. Sonic spray ionization method for atmospheric pressure ionization mass spectrometry. Anal Chem. 1994;66:4557–9.
Hirabayashi A, Sakairi M, Koizumi H. Sonic spray mass spectrometry. Anal Chem. 1995;67:2878–82.
Haddad R, Sparrapan R, Eberlin MN. Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2901–5.
Arpino PJ, Guiochon G. Optimization of the instrumental parameters of a combined LC-MS, coupled by an interface for DLI. III. Why the solvent should not be removed in LC-MS interfacing methods. J Chromatogr. 1982;251:153–64.
Vestal ML. Ionization techniques for nonvolatile molecules. Mass Spectrom Rev. 1983;2:447–80.
Busch KL. Desorption ionization mass spectrometry. J Mass Spectrom. 1995;30:233–40.
Amad MH, Cech NB, Jackson GS, Enke CG. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. J Mass Spectrom. 2000;35:784–9.
Bursey MM. Comment to readers: style and the lack of it. Mass Spectrom Rev. 1991;19:1–2.
Jemal M, Almond RB, Teitz DS. Quantitative bioanalysis utilizing high-performance liquid chromatography/electrospray mass spectrometry via selected-ion monitoring of the sodium ion adduct [M + Na] + . Rapid Commun Mass Spectrom. 1997;11:1083–8.
Suzuki H, Kameyama A, Tachibana K, Narimatsu H, Fukui K. Computationally and experimentally derived general ru1es for fragmentation of various glycosyl bonds in sodium adduct oligosaccharides. Anal Chem. 2009;81:1108–20.
Rodriquez CF, Fournier R, Chu IK, Hopkinson AC, Siu KWM. A possible origin of [M-nH + mX](m-n) + ions (X = alkali metal ion) in electrospray ionization mass spectrometry of peptides. Int J Mass Spectrom. 1999;192:303–17.
Newton KA, McLuckey SA. Gas-phase peptide/protein cationizing agent switching via ion/ion reactions. J Am Chem Soc. 2003;125:12404–5.
Newton KA, McLuckey SA. Generation and manipulation of sodium cationized peptides in the gas phase. J Am Soc Mass Spectrom. 2004;15:607–15.
van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev. 2011;30:101–20.
Mohr MD, Bomsen KO, Widmer HM. Matrix-assisted laser desorption/ionization mass spectrometry: improved matrix for oligosaccharides. Rapid Commun Mass Spectrom. 1995;9:809–14.
Kamel AM, Brown PR, Munson B. Effects of mobile-phase additives, solution pH, ionization constant, and analyte concentration on the sensitivities and electrospray ionization mass spectra of nucleoside antiviral agents. Anal Chem. 1999;71:5481–92.
Stefansson M, Sjoberg PJR, Markides KE. Regulation of multimer formation in electrospray mass spectrometry. Anal Chem. 1996;68:1792–7.
Mann M, Meng CK, Fenn JB. Interpreting mass spectra of multiply charged ions. Anal Chem. 1989;61:1702–8.
Covey TR, Bonner RF, Shushan BI, Henion JD. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:249–56.
Ferrige AG, Seddon MJ, Jarvis S. Maximum entropy deconvolution in electrospray mass spectrometry. Rapid Commun Mass Spectrom. 1991;5:374–7.
Reinhold BB, Reinhold VN. Electrospray ionization mass spectrometry: deconvolution by an entropy-based algorithm. J Am Soc Mass Spectrom. 1992;3:207–15.
Ferrige AG, Seddon MJ, Green BN, Jarvis SA, Skilling J. Disentangling electrospray spectra with maximum entropy. Rapid Commun Mass Spectrom. 1992;6:707–11.
Kelly MA, Vestling MM, Fenselau CC, Smith PB. Electrospray analysis of proteins: A comparison of positive-ion and negative-ion mass spectra at high and low pH. Org Mass Spectrom. 1992;27:1143–7.
Loo JA, Loo RR, Light KJ, Edmonds CG, Smith RD. Multiply charged negative ions by electrospray ionization of polypeptides and proteins. Anal Chem. 1992;64:81–8.
Potier N, Van Dorsselaer A, Cordier Y, Roch O, Bischoff R. Negative electrospray ionization mass spectrometry of synthetic and chemically modified oligonucleotides. Nucleic Acids Res. 1994;22:3895–903.
Lin ZJ, Li W, Dai G. Application of LC-MS for quantitative analysis and metabolite identification of therapeutic oligonucleotides. J Pharm Biomed Anal. 2007;44:330–41.
Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev. 2004;23:161–227.
Röllgen FW, Borchers F, Giessmann U, Levsen K. Collisional activation of ions formed by [Li] + ion attachment. Org Mass Spectrom. 1977;12:541–3.
Wu Y, Zhao J, Henion JD, Korfmacher WA, Lpaiguera AP, Lin C-C. Microsample determination of lovastatin and its hydroxy acid metabolite in mouse and rat plasma by liquid chromatography-ionspray tandem mass spectrometry. J Mass Spectrom. 1997;32:379–87.
Zhao JJ, Xie IH, Yang AY, Roadcap BA, Rogers JD. Quantitation of simvastatin and its beta-hydroxy acid in human plasma by liquid-liquid cartridge extraction and liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2000;35:1133–43.
Zhao JJ, Yang AY, Rogers JD. Effects of liquid chromatography mobile phase buffer contents on the ionization and fragmentation of analytes in liquid chromatography-ionspray tandem mass spectrometric determination. J Mass Spectrom. 2002;37:421–33.
Nozaki K, Tarui A, Osaka I, Kawasaki H, Arakawa R. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor. Anal Sci. 2010;26:715–8.
Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J Chromatogr A. 2005;1085:104–9.
Bruggink C, Wuhrer M, Koeleman CA, Barreto V, Liu Y, Pohl C, Ingendoh A, Hokke CH, Deelder AM. Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry. J Chromatogr B. 2005;829:136–43.
Li XF, Ma M, Scherban K, Tam YK. Liquid chromatography-electrospray mass spectrometric studies of ginkgolides and bilobalide using simultaneous monitoring of proton, ammonium and sodium adducts. Analyst. 2002;127:641–6.
Hua W, Ierardi T, Lesslie M, Hoffman BT, Mulvana D. Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection. J Chromatogr B. 2014;969:117–22.
Eichhorn P, Knepper TP. Electrospray ionization mass spectrometric studies on the amphoteric surfactant cocamidopropylbetaine. J Mass Spectrom. 2001;26:677–84.
Kamel AM, Brown PR, Munson B. Electrospray ionization mass spectrometry of tetracycline, oxytetracycline, chlorotetracycline, minocycline, and methacycline. Anal Chem. 1999;71:968–77.
Cerny RL, MacMillan DK, Gross ML, Mallams AK, Pramanik BN. Fast-atom bombardment and tandem mass spectrometry of macrolide antibiotics. J Am Soc Mass Spectrom. 1994;5:151–8.
Chang TT, Lay JO. Direct analysis of thin-layer chromatography spots by fast atom bombardment mass spectrometry. Anal Chem. 1984;56:109–11.
Siegel MM, McGahren WJ, Tomer KB, Chang TT. Applications of fast atom bombardment mass spectrometry and fast atom bombardment mass spectrometry-mass spectrometry to the maduramicins and other polyether antibiotics. Biomed Environ Mass Spectrom. 1987;14:29–38.
Volmer DA, Lock CM. Electrospray ionization and collision-induced dissociation of antibiotic polyether ionophores. Rapid Commun Mass Spectrom. 1998;12:157–64.
Wang J, Sporns P. MALDI-TOF MS quantification of coccidiostats in poultry feeds. J Agric Food Chem. 2000;48:2807–11.
Grimalt S, Pozo OJ, Marín JM, Sancho JV, Hernández F. Evaluation of different quantitative approaches for the determination of noneasily ionizable molecules by different atmospheric pressure interfaces used in liquid chromatography tandem mass spectrometry: abamectin as case of study. J Am Soc Mass Spectrom. 2005;16:1619–30.
Kamel A, Munson B. Collision induced dissociation studies of alkali metal adducts of tetracyclines and antiviral agents by electrospray ionization, hydrogen/deuterium exchange and multiple stage mass spectrometry. Eur J Mass Spectrom. 2008;14:281–97.
Fredenhagen A, Derrien C, Gassmann E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products, different fragmentation patterns for [M + H] + and [M + Na] + ions. J Nat Prod. 2005;68:385–91.
Rivera SM, Christou P, Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrom Rev. 2014;33:353–72.
van Breemen RB, Dong L, Pajkovic ND. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom. 2012;312:163–72.
Bijttebier SK, D’Hondt E, Hermans N, Apers S, Voorspoels S. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns. J Mass Spectrom. 2013;48:740–54.
van Breemen RB. Innovations in carotenoid analysis using LC-MS. Anal Chem. 1996;68:299A–304A.
Weesepoel Y, Vincken J-P, Pop RM, Liu K, Gruppen H. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis. J Mass Spectrom. 2013;48:862–74.
Rentel C, Strohschein S, Albert K, Bayer E. Silver-plated vitamins: a method of detecting tocopherols and carotenoids in LC/ESI-MS coupling. Anal Chem. 1998;70:4394–400.
Ma Y-C, Kim H-Y. Determination of steroids by liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom. 1997;8:1010–20.
Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT. Ionization of anabolic steroids by adduct formation in liquid chromatography electrospray mass spectrometry. J Mass Spectrom. 2007;42:497–516.
Kim SH, Cha EJ, Lee KM, Kim HJ, Kwon OS, Lee J. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry. Drug Test Anal. 2014;6:1174–85.
Cvacka J. Svatos A. matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2, 5-dihydroxybenzoate matrix. Rapid Commun Mass Spectrom. 2003;17:2203–7.
Horká P, Vrkoslav V, Hanus R, Pecková K, Cvačka J. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters. J Mass Spectrom. 2014;49:628–38.
Roussis SG, Proulx R. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag + electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1761–75.
Grewal RN, Rodriquez CF, Shoeib T, Chu IK, Tu Y-P, Hopkinson AC, Siu KWM. Elimination of AgR (R = H, CH3, C6H5) from collisionally-activated argentinated amines. Eur J Mass Spectrom. 2000;6:187–92.
Shi T, Zhao J, Shoeib T, Siu KWM, Hopkinson AC. Fragmentation of singly charged silver/α,ω-diaminoalkane complexes: competition between the loss of H2 and AgH molecules. Eur J Mass Spectrom. 2004;10:931–40.
Schäfer M, Dreiocker F, Budzikiewicz H. Collision-induced loss of AgH from Ag + adducts of alkylamines, aminocarboxylic acids and alkyl benzyl ethers leads exclusively to thermodynamically favored product ions. J Mass Spectrom. 2009;44:278–84.
Martha CT, van Zeist W-J, Bickelhaupt FM, Irth H, Niessen WMA. Tandem mass spectrometry of silver-adducted ferrocenyl catalyst complexes in continuous-flow reaction detection systems. J Mass Spectrom. 2010;45:1332–43.
Dreifuss PA, Wood GE, Roach JA, Brumley WC, Andrzejewski D, Sphon JA. Field desorption mass spectrometry of cyanogenic glycosides. Biomed Mass Spectrom. 1980;7:201–4.
Schulten H-R, Games DE. High resolution field desorption mass spectrometry. II—glycosides. Biomed Mass Spectrom. 1974;1:120–3.
Stobiecki M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochem. 2000;54:237–56.
Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39:1–15.
de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UATh. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112:31–63.
March R, Brodbelt J. Analysis of flavonoids: tandem mass spectrometry, computational methods, and NMR. J Mass Spectrom. 2008;43:1581–617.
Vukics V, Guttman A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev. 2010;29:1–16.
Ma YL, Vedernikova I, Van den Heuvel H, Claeys M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J Am Soc Mass Spectrom. 2000;11:136–44.
Brüll LP, Kovácik V, Thomas-Oates JE, Heerma W, Haverkamp J. Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun Mass Spectrom. 1998;12:1520–32.
Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem. 2002;74:734–40.
Kite GC, Veitch NC. Identification of common glycosyl groups of flavonoid O-glycosides by serial mass spectrometry of sodiated species. Rapid Commun Mass Spectrom. 2011;25:2579–90.
Hofmeister GE, Zhou Z, Leary JA. Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J Am Chem Soc. 1991;113:5964–70.
Lemoine J, Strecker G, Leroy Y, Fournet B, Ricart G. Collisional-activation tandem mass spectrometry of sodium adduct ions of methylated oligosaccharides: sequence analysis and discrimination between alpha-NeuAc-(2-3) and alpha-NeuAc-(2-6) linkages. Carbohydr Res. 1991;221:209–17.
Asam MR, Glish GL. Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J Am Soc Mass Spectrom. 1997;8:987–95.
Song F, Cui M, Liu Z, Yu B, Liu S. Multiple-stage tandem mass spectrometry for differentiation of isomeric saponins. Rapid Commun Mass Spectrom. 2004;18:2241–8.
Madhusudanan KP, Mathad VT, Raj SK, Bhaduri AP. Characterization of iridoids by fast atom bombardment mass spectrometry followed by collision-induced dissociation of [M + Li] + ions. J Mass Spectrom. 2000;35:321–9.
Es-Safi NE, Kerhoas L, Ducrot PH. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:1165–275.
Ricci A, Fiorentino A, Piccolella S, Golino A, Pepi F, D’Abrosca B, Letizia M, Monaco P. Furofuranic glycosylated lignans: a gas-phase ion chemistry investigation by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:3382–92.
Ricci A, Fiorentino A, Piccolella S, D’Abrosca B, Pacifico S, Monaco P. Structural discrimination of isomeric tetrahydrofuran lignan glucosides by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:979–85.
Satterfield M, Brodbelt JS. Enhanced detection of flavonoids by metal complexation and electrospray ionization mass spectrometry. Anal Chem. 2000;72:5898–906.
Pikulski M, Brodbelt JS. Differentiation of flavonoid glycoside isomers by using metal complexation and electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2003;14:1437–53.
Satterfield M, Brodbelt JS. Structural characterization of flavonoid glycosides by collisionally activated dissociation of metal complexes. J Am Soc Mass Spectrom. 2001;12:537–49.
Zhang J, Wang J, Brodbelt JS. Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. J Mass Spectrom. 2005;40:350–63.
Zhang J, Brodbelt JS. Silver complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycosides. Anal Chem. 2005;77:1761–70.
Davis BD, Brodbelt JS. LC-MSn methods for saccharide characterization of monoglycosyl flavonoids using postcolumn manganese complexation. Anal Chem. 2005;77:1883–90.
Pikulski M, Aguilar A, Brodbelt JS. Tunable transition metal-ligand complexation for enhanced elucidation of flavonoid diglycosides by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2007;18:422–31.
Dell A, Carman HH, Tiller PR, Thomas-Oates JE: Fast atom bombardment mass spectrometric strategies for characterizing carbohydrate-containing biopolymers. Biomed Environ Mass Spectrom. 1988;16:19–24.
Fukuda M, Dell A, Fukuda MN. Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem. 1984;259:4782–91.
Aduru S, Chait BT. Californium-252 plasma desorption mass spectrometry of oligosaccharides and glycoconjugates: control of ionization and fragmentation. Anal Chem. 1991;63:1621–5.
Harvey DJ. Matrix-assisted laser desorption/ionisation mass spectrometry of oligosaccharides and glycoconjugates. J Chromatogr A. 1996;720:429–46.
Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev. 1999;18:349–450.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 1999–2000. Mass Spectrom Rev. 2006;25:595–662.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001–2002. Mass Spectrom Rev. 2008;27:125–201.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003–2004. Mass Spectrom Rev. 2009;28:273–361.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005–2006. Mass Spectrom Rev. 2011;30:1–100.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom Rev. 2012;31:183–311.
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev. 34, 2015 (in press). doi:10.1002/mas.21411.
Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev. 2009;28:192–206.
Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341–72.
Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 2000;11:900–15.
Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J. 1988;5:397–409.
Orlando R, Bush CA, Fenselau C. Structural-analysis of oligosaccharides by tandem mass- spectrometry — Collisional activation of sodium adduct ions. Biomed Environ Mass Spectrom. 1990;19:747–54.
Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–61.
Griffiths WJ. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev. 2003;22:81–152.
Murphy RC, Axelsen PH. Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev. 2011;30:579–99.
Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem. 2014;61:192–206.
Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem. 2010;3:433–65.
Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86:161–75.
Murray KE, Schulten H-R. Field desorption mass spectrometry of lipids. I. The application of field desorption mass spectrometry to the investigation of natural waxes. Chem Phys Lipids. 1981;29:11–21.
Lehmann WD, Kessler M. Characterization and quantification of human plasma lipids from crude lipid extracts by field desorption mass spectrometry. Biol Mass Spectrom. 1983;10:220–6.
Puzo G, Tissie G, Lacave C, Aurelle H, Prome JC. Structural determination of ‘cord factor’ from a Corynebacterium diphtheriae strain by a combination of mass spectral ionization methods: field desorption cesium cationization and electron impact mass spectrometry studies. Biomed Mass Spectrom. 1978;5:699–703.
Matsubara T, Hayashi A. FAB/mass spectrometry of lipids. Prog Lipid Res. 1991;30:301–22.
Fredrickson HL, De Leeuw JW, Tas AC, Van der Greef J, La Vos GF, Boon JJ. Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutivubrum. Biomed Environ Mass Spectrom. 1989;18:96–105.
Adams J, Gross ML. Energy requirement for remote charge site ion decompositions and structural information from collisional activation of alkali metal cationized fatty alcohols. J Am Chem Soc. 1986;108:6915–21.
Contado MJ, Adams J. Collision-induced dissociations and B/E linked scans for structural determination of modified fatty acid esters. Anal Chim Acta. 1991;246:187–97.
Crockett, J, S,; Gross ML, Christie WW, Holman RT. Collisional activation of a series of homoconjugated octadecadienoic acids with fast atom bombardment and tandem mass spectrometry. J Am Soc Mass Spectrom. 1990;1:183–91.
Gross ML. Charge-remote fragmentation: an account of research on mechanisms and applications. Int J Mass Spectrom. 2000;200:611–24.
Zirrolli JA, Davoli E, Bettazzoli L, Gross ML, Murphy RC. Fast atom bombardment and collision-induced dissociation of prostaglandins and thromboxanes: Some examples of charge remote fragmentation. J Am Soc Mass Spectrom. 1990;1:325–35.
Ann Q, Adams J. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li] + ions. J Am Soc Mass Spectrom. 1992;3:260–3.
Hsu F-F, Turk J, Stewart ME, Downing DT. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2002;13:680–95.
Levery SB, Toledo MS, Doong RL, Straus AH, Takahashi HK. Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li + adduct ions. Rapid Commun Mass Spectrom. 2000;14:551–63.
Hsu F-F, Turk J. Distinction among isomeric unsaturated fatty acids as lithium adducts by ESI-MS using low energy CID on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:600–12.
Byrdwell WC. Atmospheric-pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001;36:327–46.
Hsu F-F, Turk J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:587–99.
Domingues P, Domingues MR, Amado FM, Ferrer-Correia AJ. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:799–804.
Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B. 2009;877:2673–95.
Kushi Y, Handa S. Application of field desorption mass spectrometry for the analysis of sphingoglycolipids. J Biochem. 1982;91:923–31.
Kushi Y, Handa S, Kambara H, Shizukuishi K. Comparative study of acidic glycosphingolipids by field desorption and secondary ion mass spectrometry. J Biochem. 1983;94:1841–1150.
Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B. 2009;877:2696–708.
Ann Q, Adams J. Structure determination of sphingolipids by mass spectrometry. Mass Spectrom Rev. 1993;12:51–85.
Ann Q, Adams J. Structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal Chem. 1993;65:7–13.
Park T, Park YS, Rho JR, Kim YH. Structural determination of cerebrosides isolated from Asterias amurensis starfish eggs using high-energy collision-induced dissociation of sodium-adducted molecules. Rapid Commun Mass Spectrom. 2011;25:572–8.
Fuchs B. Analysis of phospolipids and glycolipids by thin-layer chromatography-matrix-assisted laser desorption and ionization mass spectrometry. J Chromatogr A. 2012;1259:62–73.
Fuchs B, Schiller J. Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Technol. 2009;111:83–98.
Gode D, Volmer DA. Lipid imaging by mass spectrometry—a review. Analyst. 2013;138:1289–315.
Rujoi M, Estrada R, Yappert MC. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem. 2004;76:1657–63.
Ho YP, Huang PC, Deng KH. Metal ion complexes in the structural analysis of phospholipids by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:114–21.
Christie WW. Separation of molecular species of triacylglycerols by HPLC with a silver ion column. J Chromatogr A. 1988;454:273–84.
Sandra P, Medvedovici A, Zhao Y, David F. Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. J Chromatogr A. 2002;974:231–41.
Lísa M, Velínská H, Holčapek M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem. 2009;81:3903–30.
Havrilla CM, Hachey DL, Porter NA. Coordination (Ag + ) ion spray—mass spectrometry of peroxidation products of cholesterol linoleate and cholesterol arachidonate: high-performance liquid chromatography—mass spectrometry analysis of peroxide products from polyunsaturated lipid autoxidation. J Am Chem Soc. 2000;122:8042–55.
Seal JR, Porter NA. Liquid chromatography coordination ion-spray mass spectrometry (LC-CIS-MS) of docosahexaenoate ester hydroperoxides. Anal Bioanal Chem. 2004;378:1007–13.
Yin H, Brooks JD, Gao L, Porter NA, Morrow JD. Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem. 2007;282:29890–1.
Roepstorff P, Nielsen PF, Klarskov K, Højrup P. Applications of plasma desorption mass spectrometry in peptide and protein chemistry. Biomed Environ Mass Spectrom. 1988;16:9–18.
Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988;16:99–111.
Desiderio DM, Sabbatini JZ. Field desorption collision activation linked scanning mass spectrometry of underivatized oligopeptides. Biol Mass Spectrom. 2005;8:565.
Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem. 1990;62:882–99.
Smith RD, Loo JA, Ogorzalek Loo RR, Busman M, Udseth HR. Principles and practice of electrospray ionization-mass spectrometry for large polypeptides and proteins. Mass Spectrom Rev. 1991;10:359–452.
Grese RP, Cerny RL, Gross ML. Metal ion-peptide interactions in the gas phase: A tandem mass spectrometry study of alkali metal cationized peptides. J Am Chem Soc. 1989;111:2835–42.
Sabareesh V, Balaram P. Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Rapid Commun Mass Spectrom. 2006;20:618–28.
Deutsch J, Gilon C, Chorev M. Field desorption mass spectrometry. II. Potassium cationization field desorption mass spectrometry of some penta- and hexapeptides derived from substance P. Int J Pept Protein Res. 1981;18:203–7.
Draper WM, Xu D, Perera SK. Electrolyte-induced ionization suppression and microcystin toxins: ammonium formate suppresses sodium replacement ions and enhances protiated and ammoniated ions for improved specificity in quantitative LC-MS-MS. Anal Chem. 2009;81:4153–60.
Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.
Mouls L, Aubagnac J-L, Martinez J, Enjalbal C. Low energy peptide fragmentations in an ESI-Q-TOF type mass spectrometer. J Proteome Res. 2007;6:1378–91.
Roepstorff P, Fohlmann J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11:601.
Hunt DF, Yates JR III, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986;83:6233–7.
Papayannopoulos IA. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev. 1995;14:49–73.
Jensen ON, Podtelejnikov AV, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem. 1997;69:4741–50.
Yates JR III, Eng JK, McCormack AL, Schieltz D. Methods to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995;67:1426–38.
Liska AJ, Shevchenko A. Combining mass spectrometry with database interrogation strategies in proteomics. Trends Anal Chem. 2003;22:291–8.
Yates JR III. Mass spectrometry and the age of proteome. J Mass Spectrom. 1998;33:1–19.
Kinter M, Sherman NE. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley Interscience; 2000. ISBN 978-0-47132-249–8.
Zhang Y, Fonslow BR, Shan B, Baek MC; Yates JR 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343–94.
Liebler DC. Introduction to proteomics: tools for the new biology. Totowa: Humana Press Inc; 2002. ISBN 978-0-89603-991–9.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortesen P, Shevchenk A, Boucherie H, Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels. Proc Natl Acad Sci U S A. 1996;93:14440–5.
Cramer R, Gobom J, Nordhoff E. High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2005;2:407–20.
Hardouin J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom Rev. 2007;26:672–82.
Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.
Zhurov KO, Fornelli L, Wopdrich MD, Laskay ÜA, Tsybin YO. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev. 2013;42:5014–30.
Kulik W, Heerma W, Terlouw JK. A novel fragmentation process in the fast-atom bombardment/tandem mass spectra of peptides cationized with Na + , determining the identity of the C-terminal amino acid. Rapid Commun Mass Spectrom. 1989;3:276–9.
Lin T, Glish GL. C-terminal peptide sequencing via multistage mass spectrometry. Anal Chem. 1998;70:5162–5.
Feng WY, Gronert S, Fletcher KA, Warres A, Lebrilla CB. The mechanism of C-terminal fragments in alkali metal ion complexes of peptides. Int J Mass Spectrom. 2003;222:117–34.
Anbalagan V, Silva ATM, Rajagopalachary S, Bulleigh K, Talaty ER, Van Stipdonk MJ. Influence of “Alternative” C-terminal amino acids on the formation of [b3 + 17 + Cat] + products from metal cationized synthetic tetrapeptides. J Mass Spectrom. 2004;39:495–504.
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem. 2005;38:335–50.
Schulten HR, Beckey HD. High resolution field desorption mass spectrometry-I: nucleosides and nucleotides. Org Mass Spectrom. 1973;7:861–7.
McNeil CJ, Macfarlaine RD. Observation of a fully protected oligonucleotide dimer at m/z 12637 by californium-252 plasma desorption mass spectrometry. J Am Chem Soc. 1981;103:1609–10.
Grotjahn L, Taylor LCE. The use of signal averaging techniques for the quantitation and mass measurement of high molecular weight compounds using fast atom bombardment mass spectrometry. Org Mass Spectrom. 1985;20:146–52.
Nordhoff E, Kirpekar F, Roepstorff P. Mass spectrometry of nucleic acids. Mass Spectrom Rev. 1996;15:67–138.
Schürch S. Characterization of nucleic acids by tandem mass spectrometry—The second decade (2004-2013): from DNA to RNA and modified sequences. Mass Spectrom Rev. 2015 (in press). doi:10.1002/mas.21442.
van Dongen WD, Niessen WMA. Bioanalytical LC-MS of therapeutic oligonucleotides. Bioanalysis. 2011;3:541–64.
Huber CG, Oberacher H. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2001;20:310–43.
Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. 2014;33:302–31.
Bleicher K, Bayer E. Various factors influencing the signal intensity of oligonucleotides in electrospray mass spectrometry. Biol Mass Spectrom. 1994;23:320–2.
Castleberry CM, Rodicio LP, Limbach PA. Electrospray ionization mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem. 2008. doi:10.1002/0471142700.nc1002s35.
Castleberry CM, Chou CW, Limbach PA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem. 2008. doi:10.1002/0471142700.nc1001s33.1.
Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal Chem. 1997;69:1320–5.
Sauer S. The essence of DNA sample preparation for MALDI mass spectrometry. J Biochem Biophys Methods. 2007;70:311–8.
McLuckey SA, Van Berkel GJ, Glish GL. Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom. 1992;3:60–70.
Murray KK. DNA sequencing by mass spectrometry. J Mass Spectrom. 1996;31:1203–15.
Xiang Y, Abliz Z, Takayama M. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15:689–96.
Boschenok J, Sheil MM. Electrospray tandem mass spectrometry of nucleotides. Rapid Commun Mass Spectrom. 1996;10:144–9.
Stano M, Flosadottir HD, Ingolfsson O. Effective quenching of fragment formation in negative ion oligonucleotide matrix-assisted laser desorption/ionization mass spectrometry through sodium adduct formation. Rapid Commun Mass Spectrom. 2006;20:3498–502.
Wong SF, Meng CK, Fenn JB. Multiple charging in electrospray ionization of poly(ethylene glycols). J Phys Chem. 1988;92:546–50.
Varray S, Aubagnac J-L, Lamaty F, Lazaro R, Martinez J, Enjalbal C. Poly(ethyleneglycol) in electrospray ionization (ESI) mass spectrometry. Analusis. 2000;28:263–8.
Mincheva Z, Hadjieva P, Kalcheva V, Seraglia R, Traldi P, Przybylski M. Matrix-assisted laser desorption/ionization, fast atom bombardment and plasma desorption mass spectrometry of polyethylene glycol esters of (2-benzothiazolon-3-yl)acetic acid. J Mass Spectrom. 2001;26:626–32.
González-Valdez J, Rito-Palomares M, Benavides J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for “PEGylaided” bioprocesses. Anal Bioanal Chem. 2012;403:2225–35.
Ayorinde FO, Eribo BE, Johnson JH Jr, Elhilo E. Molecular distribution of some commercial nonylphenol ethoxylates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1124–8.
Lattimer RP. Tandem mass spectrometry of lithium-attachment ions from polyglycols. J Am Soc Mass Spectrom. 1992;3:225–34.
Lattimer RP. Tandem mass spectrometry of poly(ethylene glycol) lithium-attachment ions. J Am Soc Mass Spectrom. 1994;5:1072–80.
Bahr U, Deppe. A, Karas M, Hillenkamp F, Giessmann U. Mass spectrometry of synthetic polymers by UV-matrix-assisted laser desorption/ionization. Anal Chem. 1992;64:2866–9.
Brandt H, Ehmann T, Otto M. Toward prediction: using chemometrics for the optimization of sample preparation in MALDI-TOF MS of synthetic polymers. Anal Chem. 2010;82:8169–75.
Rizzarelli P, Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta. 2014;808:18–43.
Altuntaş E, Schubert US. “Polymeromics”: mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Anal Chim Acta. 2014;808:56–69.
Wesdemiotis C, Solak N, Polce MJ, Dabney DE, Chaicharoen K, Katzenmeyer BC. Fragmentation pathways of polymer ions. Mass Spectrom Rev. 2011;30:523–59.
Crecelius AC, Baumgaertel A, Schubert US. Tandem mass spectrometry of synthetic polymers. J Mass Spectrom. 2009;44:1277–86.
Crecelius AC, Vitz J, Schubert US. Mass spectrometric imaging of synthetic polymers. Anal Chim Acta. 2014;808:10–7.
Tintaru A, Chendo C, Wang Q, Viel S, Quéléver G, Peng L, Posocco P, Pricl S, Charles L. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization—a mass spectrometry, ion mobility and molecular modeling study. Anal Chim Acta. 2014;808:163–74.
Terrier P, Desmazières B, Tortajada J, Buchmann W. APCI/APPI for synthetic polymer analysis. Mass Spectrom Rev. 2011;30:854–74.
Flick TG, Merenbloom SI, Williams ER. Effects of metal ion adduction on the gas-phase conformations of protein ions. J Am Soc Mass Spectrom. 2013;24:1654–62.
Carlton DD Jr, Schug KA. A review on the interrogation of peptide-metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta. 2011;686:19–39.
Jaswal SS. Biological insights from hydrogen exchange mass spectrometry. Biochim Biophys Acta. 1834;2013:1188–201.
Balasubramaniam D, Komives EA. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochim Biophys Acta. 1834;2013:1202–9.
Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJ. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010;39:1633–55.
Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6:281–94.
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. Mass Spectrom Rev. 33, 2014, doi:10.1002/mas.21450.
Konermann L, Vahidi S, Sowole MA. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal Chem. 2014;86:213–32.
Seo Y, Schenauer MR, Leary JA. Biologically relevant metal-cation binding induces conformational changes in heparin oligosaccharides as measured by ion mobility mass spectrometry. Int J Mass Spectrom. 2011;303:191–8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Niessen, W. (2015). Cationization Mass Spectrometry for Condensed-Phase Samples. In: Fujii, T. (eds) Ion/Molecule Attachment Reactions: Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7588-1_7
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7588-1_7
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7587-4
Online ISBN: 978-1-4899-7588-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)