Cationization Mass Spectrometry for Condensed-Phase Samples



Chapter 7 Electron ionization (EI) is the gold standard in analyte ionization by mass spectrometry (MS). As an alternative to EI, a wide variety of alternative ionization techniques have been developed. A characteristic feature of these ionization techniques is that often even-electron ions are generated as a result of ion attachment processes. In these ion attachment processes, generally only very little energy transfer is involved. As a result, ions related to the intact analyte molecule are generated with little fragment ions (soft ionization techniques). Next to the generation of protonated molecules ([M+H]+) by attachment of a proton, attachment of other cations, e.g., Alkali+-ions as well as other metal ions, may also be observed. This chapter discusses condensed-phase ionization techniques from the perspective of Alkali+-ion attachment mass spectrometry. Thus, attention is paid to liquid-phase ionization techniques, i.e., thermospray ionization (TSI) and electrospray ionization (ESI), and solid-phase ionization or desorption/ionization techniques, including field desorption (FDI), fast-atom bombardment (FAB), and matrix-assisted laser desorption ionization (MALDI). Application of Alkali+-cationization in these condensed-phase ionization techniques are discussed in the areas of small molecule analysis as well as tin the analysis of glycosides, sugars, glycans and oligosaccharides, lipids and phospholipids, peptides and proteins, oligonucleotides, and synthetic polymers. Differences in fragmentation between protonated and Alkali+- cationized molecules are highlighted.


Ion-attachment mass spectrometry Thermospray ionization Electrospray ionization Field desorption Fast-atom bombardment Matrix-assisted laser desorption ionization Atmospheric-pressure desorption ionization techniques Ionization mechanism H+/Alkali+-exchange reactions Tandem mass spectrometry Collision-induced dissociation Protonated molecules Alkali+-cationized molecules Fragmentation characteristics Glycosides Sugars Glycans Oligosaccharides Lipids Phospholipids Charge-remote fragmentation Peptides Oligonucleotides Synthetic polymers 


  1. 1.
    Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39:1091–112.PubMedGoogle Scholar
  2. 2.
    Pittenauer E, Allmaier G. High-energy collision induced dissociation of biomolecules: MALDI-TOF/RTOF mass spectrometry in comparison to tandem sector mass spectrometry. Comb Chem High Throughput Screen. 2009;12:137–55.PubMedGoogle Scholar
  3. 3.
    Teesch LM, Adams J. Metal ions as special reagents in analytical mass spectrometry. Org Mass Spectrom. 1992;27:931–43.Google Scholar
  4. 4.
    Beckey HD. Field ionization mass spectrometry. Res/Dev. 1969;20(11):26.Google Scholar
  5. 5.
    Beckey HD. Principles of field ionization and field desorption mass spectrometry. Oxford: Pergamon; 1977. ISBN 0080206123.Google Scholar
  6. 6.
    Lattimer RP, Schulten H-R. Field ionization and field desorption mass spectrometry: past, present, and future. Anal Chem. 1989;61:1201A–15.Google Scholar
  7. 7.
    Linden HB. Liquid injection field desorption ionization: a new tool for soft ionization of samples including air-sensitive catalysts and non-polar hydrocarbons. Eur. J Mass Spectrom. 2004;10:459–68.Google Scholar
  8. 8.
    Smith DF, Schaub TM, Rodgers RP, Hendrickson CL, Marshall AG. Automated liquid injection field desorption/ionization for Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2008;80:7379–82.PubMedGoogle Scholar
  9. 9.
    Gross JH, Nieth N, Linden HB, Blumbach U, Richter FJ, Tauchert ME, Tompers R, Hofmann P. Liquid injection field desorption/ionization of reactive transition metal complexes. Anal Bioanal Chem. 2006;386:52–8.PubMedGoogle Scholar
  10. 10.
    Słomińska B, Chaładaj W, Danikiewicz W. Assessment of the various ionization methods in the analysis of metal salen complexes by mass spectrometry. J Mass Spectrom. 2014;49:392–9.PubMedGoogle Scholar
  11. 11.
    Gross JH. Liquid injection field desorption/ionization-mass spectrometry of ionic liquids. J Am Soc Mass Spectrom. 2007;18:2254–62.PubMedGoogle Scholar
  12. 12.
    Gross JH, Vékey K, Dallos A. Field desorption mass spectrometry of large multiply branched saturated hydrocarbons. J Mass Spectrom. 2001;36:522–8.PubMedGoogle Scholar
  13. 13.
    Qian K, Edwards KE, Siskin M, Olmstead WN, Mennito AS, Dechert GJ, Hoosain NE. Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy Fuels. 2007;21:1042–7.Google Scholar
  14. 14.
    Schaub TM, Rodgers RP, Marshall AG, Qian K, Green LA, Olmstead WN. Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry. Energy Fuels. 2005;19:1566–73.Google Scholar
  15. 15.
    Schulten HR, Bahr U, Monkhouse PB. Biochemical application of field desorption mass spectrometry. J Biochem Biophys Methods. 1983;8:239–69.PubMedGoogle Scholar
  16. 16.
    Schulten HR. Off-line combination of liquid chromatography and field desorption mass spectrometry: principles and environmental, medical and pharmaceutical applications. J Chromatogr. 1982;251:105–28.PubMedGoogle Scholar
  17. 17.
    Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Whalley ET. Fast atom bombardment mass spectrometry of bradykinin and related oligopeptides. Biomed. Mass Spectrom. 1981;8:337–42.Google Scholar
  18. 18.
    Morris HR, Panico M, Barber M, Bordoli RS, Sedgwick RD, Tyler A. Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Commun. 1981;101:623–31.PubMedGoogle Scholar
  19. 19.
    Bélanger J, Paré JRJ. Fast atom bombardment mass spectrometry in the pharmaceutical analysis of drugs. J Pharm Biomed Anal. 1986;4:415–41.PubMedGoogle Scholar
  20. 20.
    Fenselau C, Cotter RJ. Chemical aspects of fast atom bombardment. Chem Rev. 1987;87:501–12.Google Scholar
  21. 21.
    Benninghoven A, Rudenauer FG, Werner HW. Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. Chichester: Wiley; 1986. ISBN 3540162631.Google Scholar
  22. 22.
    Cook KD, Todd PJ, Friar DH. Physical properties of matrices used for fast atom bombardment. Biomed Environ Mass Spectrom. 1989;18:492–7.Google Scholar
  23. 23.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100 000 by laser ionization TOF-MS. Rapid Commun Mass Spectrom. 1988;2:151–3.Google Scholar
  24. 24.
    Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem. 1988;60:2299–301.PubMedGoogle Scholar
  25. 25.
    Karas M, Bahr U, Ingendoh A, Nordhoff E, Stahl B, Strupat K, Hillenkamp F. Principles and applications of matrix-assisted UV laser desorption ionization mass spectrometry. Anal Chim Acta. 1990;241:175–85.Google Scholar
  26. 26.
    Mann. M, Talbo G. Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. Curr Opin Biotechnol. 1996;7:11–9.PubMedGoogle Scholar
  27. 27.
    Karas M. Matrix-assisted laser desorption ionization mass spectrometry: a progress report. Biochem Soc Trans. 1996;24:897–900.PubMedGoogle Scholar
  28. 28.
    Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta. 2003;337:11–21.PubMedGoogle Scholar
  29. 29.
    Knochenmuss R. Ion formation mechanisms in UV-MALDI. Analyst. 2006;131:966–86.PubMedGoogle Scholar
  30. 30.
    Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395–426.PubMedGoogle Scholar
  31. 31.
    Angel PM, Caprioli RM. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry. 2013;52:3818–28.PubMedGoogle Scholar
  32. 32.
    Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.PubMedGoogle Scholar
  34. 34.
    Grade H, Cooks RG. Secondary ion mass spectrometry. Cationization of organic molecules with metals. J Am Chem Soc. 1978;100:5615–21.Google Scholar
  35. 35.
    MacFarlane RD, Torgerson DF. Californium-252 plasma desorption mass spectroscopy. Science. 1976;191:920–5.PubMedGoogle Scholar
  36. 36.
    Cotter RJ. Plasma desorption mass spectrometry: coming of age. Anal Chem. 1988;60:781A–91.PubMedGoogle Scholar
  37. 37.
    Sundqvist B, Macfarlane R.D. 252Cf-Plasma desorption mass spectrometry. Mass Spectrom Rev. 1985;4:421–60.Google Scholar
  38. 38.
    Blakley CR, McAdams MJ, Vestal ML. Crossed-beam liquid chromatograph-mass spectrometer combination. J Chromatogr. 1978;158:261–76.Google Scholar
  39. 39.
    Blakley CR, Carmody JJ, Vestal ML. Liquid chromatograph-mass spectrometer for analysis of nonvolatile samples. Anal Chem. 1980;52:1636–41.Google Scholar
  40. 40.
    Vestal ML, Fergusson GJ. Thermospray liquid chromatograph/mass spectrometer interface with direct electrical heating of the capillary. Anal Chem. 1985;57:2373–8.PubMedGoogle Scholar
  41. 41.
    Arpino PJ. Combined liquid chromatography mass spectrometry. Part II. Techniques and mechanisms of thermospray. Mass Spectrom Rev. 1990;9:631–69.Google Scholar
  42. 42.
    Arpino PJ. Combined liquid chromatography mass spectrometry. Part III. Applications of thermospray. Mass Spectrom Rev. 1992;11:3–40.Google Scholar
  43. 43.
    Gáspár A, Berndt H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)— a simple method for trace element determination with microsamples in the μg/l concentration range. Spectrochim Acta B. 2000;55:587–97.Google Scholar
  44. 44.
    Blakley CR, Carmody JJ, Vestal ML. A new soft ionization technique for mass spectrometry of complex molecules. J Am Chem Soc. 1980;102:5931–3.Google Scholar
  45. 45.
    Blakley CR, Vestal ML. Thermospray interface for liquid chromatography/mass spectrometry. Anal Chem. 1983;55:750–4.Google Scholar
  46. 46.
    Katta V, Rockwood AL, Vestal ML. Field limit for ion evaporation from charged thermospray droplets. Int J Mass Spectrom Ion Proc. 1991;103:129–48.Google Scholar
  47. 47.
    Dole M, Hines RL, Mack LL, Mobley RC, Ferguson LD, Alice MB. Molecular beams of macroions. J Chem Phys. 1968;49:2240–9.Google Scholar
  48. 48.
    Gieniec J, Mack LL, Nakamae K, Gupta C, Kumar V, Dole M. Electrospray mass spectroscopy of macromolecules: application of an ion-drift spectrometer. Biomed Mass Spectrom. 1984;11:259–68.Google Scholar
  49. 49.
    Yamashita M, Fenn JB. Electrospray ion source. Another variation of the free-jet theme. J Phys Chem. 1984;88:4451–9.Google Scholar
  50. 50.
    Yamashita M, Fenn JB. Negative ion production with the electrospray ion source. J Phys Chem. 1984;88:4671–5.Google Scholar
  51. 51.
    Simons DS, Colby BN, Evans CA Jr. Electrohydrodynamic ionization mass spectrometry—the ionization of liquid glycerol and non-volatile organic solutes. Int J Mass Spectrom Ion Phys. 1974;15:291–302.Google Scholar
  52. 52.
    Stimpson BP, Evans CA Jr Electrohydrodynamic ionization mass spectrometry of biochemical materials. Biomed Mass Spectrom. 1978;5:52–63.PubMedGoogle Scholar
  53. 53.
    Zolotai NB, Karpov GV, Tal’roze VL, Skurat VE, Ramendik GI, Basyuta YuV. Mass spectrometry of the field evaporation of ions from liquid solutions in glycerol. J Anal Chem USSR. 1980;35:937–42.Google Scholar
  54. 54.
    Zolotai NB, Karpov GV, Tal’roze VL, Skurat VE, Basyuta YuV, Ramendik GI. Mass spectrometry of the field evaporation of ions from water and aqueous solutions, aqueous sodium iodide and saccharose solutions. J Anal Chem USSR. 1980;35:1161–74.Google Scholar
  55. 55.
    Cook KD. Electrohydrodynamic mass spectrometry. Mass Spectrom Rev. 1986;5:467–519.Google Scholar
  56. 56.
    Iribarne JV, Thomson BA. On the evaporation of small ions from charged droplets. J Chem Phys. 1976;64:2287–94.Google Scholar
  57. 57.
    Thomson BA, Iribarne JV. Field-induced ion evaporation from liquid surfaces at atmospheric pressure. J Chem Phys. 1979;71:4451–63.Google Scholar
  58. 58.
    Thomson BA, Iribarne JV, Dziedzic PJ. Liquid ion evaporation/mass spectrometry/mass spectrometry for the detection of polar and labile molecules. Anal Chem. 1982;54:2219–24.Google Scholar
  59. 59.
    Iribarne JV, Dziedzic PJ, Thomson BA. Atmospheric pressure ion evaporation-mass spectrometry. Int J Mass Spectrom Ion Phys. 1983;50:331–47.Google Scholar
  60. 60.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization—principles and practice. Mass Spectrom Rev. 1990;9:37–70.Google Scholar
  61. 61.
    Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20:362–87.PubMedGoogle Scholar
  62. 62.
    Smith RD, Light-Wahl KJ. The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: promise, pitfalls and prognosis. Biol Mass Spectrom. 1993;22:493–501.Google Scholar
  63. 63.
    Huang MZ, Yuan CH, Cheng SC, Cho YT, Shiea J. Ambient ionization mass spectrometry. Annu Rev Anal Chem. 2010;3:43–65.Google Scholar
  64. 64.
    Mortier KA, Zhang G-F, Van Peteghem CH, Lambert WE. Adduct formation in quantitative bioanalysis: effect of ionization conditions on paclitaxel. J Am Soc Mass Spectrom. 2004;15:585–92.PubMedGoogle Scholar
  65. 65.
    Kelly RT, Tolmachev AV, Page JS, Tang K, Smith RD. The ion funnel: theory, implementations, and applications. Mass Spectrom Rev. 2010;29:294–312.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004;18:2401–14.PubMedGoogle Scholar
  67. 67.
    Lorenzen K, van Duijn E. Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci. 2010;62:17.12.1–17.Google Scholar
  68. 68.
    Wilm MS, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem. 1996;68:1–8.PubMedGoogle Scholar
  69. 69.
    Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem. 2005;77:527–33.PubMedGoogle Scholar
  70. 70.
    Bayer E, Gfrörer P, Rentel C. Coordination-ionspray-MS (CIS-MS), a universal detection and characterization method for direct coupling with separation techniques. Angew Chem Int Ed. 1997;38:992–5.Google Scholar
  71. 71.
    Carroll DI, Dzidic I, Stillwell RN, Haegele KD, Horning EC. Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatography-mass spectrometry-computer analytical system. Anal Chem. 1975;47:2369–73.Google Scholar
  72. 72.
    Carroll DI, Dzidic I, Horning EC, Stillwell RN. Atmospheric-pressure ionization mass spectrometry. Appl Spectrosc Re. 1981;v. 17:337–406.Google Scholar
  73. 73.
    Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28:870–97.PubMedGoogle Scholar
  74. 74.
    Bos SJ, van Leeuwen SM, Karst U. From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal Bioanal Chem. 2006;384:85–99.PubMedGoogle Scholar
  75. 75.
    Robb DB, Blades MW. State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal Chim Acta. 2008;627:34–49.PubMedGoogle Scholar
  76. 76.
    Van Berkel GJ, Pasilis SP, Ovchinnikova O. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom. 2008;43:1161–80.PubMedGoogle Scholar
  77. 77.
    Takáts Z, Wiseman JM, Cooks RG. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry. and biology. J Mass Spectrom. 2005;40:1261–75.PubMedGoogle Scholar
  78. 78.
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32:218–43.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72:652–7.PubMedGoogle Scholar
  80. 80.
    Moyer SC, Cotter RJ. Atmospheric-pressure MALDI. Anal Chem. 2002;74:468A–476A.PubMedGoogle Scholar
  81. 81.
    Creaser CS, Ratcliffe L. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry: a review. Curr Anal Chem. 2006;2:9–15.Google Scholar
  82. 82.
    Laiko VV, Moyer SC, Cotter RJ. Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem. 2000;72:5239–43.PubMedGoogle Scholar
  83. 83.
    Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.PubMedGoogle Scholar
  84. 84.
    McEwen CN, McKay RG, Larsen BS. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commerical LC/MS instruments. Anal Chem. 2005;77:7826–31.PubMedGoogle Scholar
  85. 85.
    Hirabayashi A, Sakairi M, Koizumi H. Sonic spray ionization method for atmospheric pressure ionization mass spectrometry. Anal Chem. 1994;66:4557–9.Google Scholar
  86. 86.
    Hirabayashi A, Sakairi M, Koizumi H. Sonic spray mass spectrometry. Anal Chem. 1995;67:2878–82.PubMedGoogle Scholar
  87. 87.
    Haddad R, Sparrapan R, Eberlin MN. Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2901–5.PubMedGoogle Scholar
  88. 88.
    Arpino PJ, Guiochon G. Optimization of the instrumental parameters of a combined LC-MS, coupled by an interface for DLI. III. Why the solvent should not be removed in LC-MS interfacing methods. J Chromatogr. 1982;251:153–64.Google Scholar
  89. 89.
    Vestal ML. Ionization techniques for nonvolatile molecules. Mass Spectrom Rev. 1983;2:447–80.Google Scholar
  90. 90.
    Busch KL. Desorption ionization mass spectrometry. J Mass Spectrom. 1995;30:233–40.Google Scholar
  91. 91.
    Amad MH, Cech NB, Jackson GS, Enke CG. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. J Mass Spectrom. 2000;35:784–9.PubMedGoogle Scholar
  92. 92.
    Bursey MM. Comment to readers: style and the lack of it. Mass Spectrom Rev. 1991;19:1–2.Google Scholar
  93. 93.
    Jemal M, Almond RB, Teitz DS. Quantitative bioanalysis utilizing high-performance liquid chromatography/electrospray mass spectrometry via selected-ion monitoring of the sodium ion adduct [M + Na] + . Rapid Commun Mass Spectrom. 1997;11:1083–8.PubMedGoogle Scholar
  94. 94.
    Suzuki H, Kameyama A, Tachibana K, Narimatsu H, Fukui K. Computationally and experimentally derived general ru1es for fragmentation of various glycosyl bonds in sodium adduct oligosaccharides. Anal Chem. 2009;81:1108–20.PubMedGoogle Scholar
  95. 95.
    Rodriquez CF, Fournier R, Chu IK, Hopkinson AC, Siu KWM. A possible origin of [M-nH + mX](m-n) +  ions (X = alkali metal ion) in electrospray ionization mass spectrometry of peptides. Int J Mass Spectrom. 1999;192:303–17.Google Scholar
  96. 96.
    Newton KA, McLuckey SA. Gas-phase peptide/protein cationizing agent switching via ion/ion reactions. J Am Chem Soc. 2003;125:12404–5.PubMedGoogle Scholar
  97. 97.
    Newton KA, McLuckey SA. Generation and manipulation of sodium cationized peptides in the gas phase. J Am Soc Mass Spectrom. 2004;15:607–15.PubMedGoogle Scholar
  98. 98.
    van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev. 2011;30:101–20.PubMedGoogle Scholar
  99. 99.
    Mohr MD, Bomsen KO, Widmer HM. Matrix-assisted laser desorption/ionization mass spectrometry: improved matrix for oligosaccharides. Rapid Commun Mass Spectrom. 1995;9:809–14.PubMedGoogle Scholar
  100. 100.
    Kamel AM, Brown PR, Munson B. Effects of mobile-phase additives, solution pH, ionization constant, and analyte concentration on the sensitivities and electrospray ionization mass spectra of nucleoside antiviral agents. Anal Chem. 1999;71:5481–92.PubMedGoogle Scholar
  101. 101.
    Stefansson M, Sjoberg PJR, Markides KE. Regulation of multimer formation in electrospray mass spectrometry. Anal Chem. 1996;68:1792–7.Google Scholar
  102. 102.
    Mann M, Meng CK, Fenn JB. Interpreting mass spectra of multiply charged ions. Anal Chem. 1989;61:1702–8.Google Scholar
  103. 103.
    Covey TR, Bonner RF, Shushan BI, Henion JD. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:249–56.PubMedGoogle Scholar
  104. 104.
    Ferrige AG, Seddon MJ, Jarvis S. Maximum entropy deconvolution in electrospray mass spectrometry. Rapid Commun Mass Spectrom. 1991;5:374–7.Google Scholar
  105. 105.
    Reinhold BB, Reinhold VN. Electrospray ionization mass spectrometry: deconvolution by an entropy-based algorithm. J Am Soc Mass Spectrom. 1992;3:207–15.PubMedGoogle Scholar
  106. 106.
    Ferrige AG, Seddon MJ, Green BN, Jarvis SA, Skilling J. Disentangling electrospray spectra with maximum entropy. Rapid Commun Mass Spectrom. 1992;6:707–11.Google Scholar
  107. 107.
    Kelly MA, Vestling MM, Fenselau CC, Smith PB. Electrospray analysis of proteins: A comparison of positive-ion and negative-ion mass spectra at high and low pH. Org Mass Spectrom. 1992;27:1143–7.Google Scholar
  108. 108.
    Loo JA, Loo RR, Light KJ, Edmonds CG, Smith RD. Multiply charged negative ions by electrospray ionization of polypeptides and proteins. Anal Chem. 1992;64:81–8.PubMedGoogle Scholar
  109. 109.
    Potier N, Van Dorsselaer A, Cordier Y, Roch O, Bischoff R. Negative electrospray ionization mass spectrometry of synthetic and chemically modified oligonucleotides. Nucleic Acids Res. 1994;22:3895–903.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Lin ZJ, Li W, Dai G. Application of LC-MS for quantitative analysis and metabolite identification of therapeutic oligonucleotides. J Pharm Biomed Anal. 2007;44:330–41.PubMedGoogle Scholar
  111. 111.
    Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev. 2004;23:161–227.PubMedGoogle Scholar
  112. 112.
    Röllgen FW, Borchers F, Giessmann U, Levsen K. Collisional activation of ions formed by [Li] + ion attachment. Org Mass Spectrom. 1977;12:541–3.Google Scholar
  113. 113.
    Wu Y, Zhao J, Henion JD, Korfmacher WA, Lpaiguera AP, Lin C-C. Microsample determination of lovastatin and its hydroxy acid metabolite in mouse and rat plasma by liquid chromatography-ionspray tandem mass spectrometry. J Mass Spectrom. 1997;32:379–87.PubMedGoogle Scholar
  114. 114.
    Zhao JJ, Xie IH, Yang AY, Roadcap BA, Rogers JD. Quantitation of simvastatin and its beta-hydroxy acid in human plasma by liquid-liquid cartridge extraction and liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2000;35:1133–43.PubMedGoogle Scholar
  115. 115.
    Zhao JJ, Yang AY, Rogers JD. Effects of liquid chromatography mobile phase buffer contents on the ionization and fragmentation of analytes in liquid chromatography-ionspray tandem mass spectrometric determination. J Mass Spectrom. 2002;37:421–33.PubMedGoogle Scholar
  116. 116.
    Nozaki K, Tarui A, Osaka I, Kawasaki H, Arakawa R. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor. Anal Sci. 2010;26:715–8.PubMedGoogle Scholar
  117. 117.
    Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J Chromatogr A. 2005;1085:104–9.PubMedGoogle Scholar
  118. 118.
    Bruggink C, Wuhrer M, Koeleman CA, Barreto V, Liu Y, Pohl C, Ingendoh A, Hokke CH, Deelder AM. Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry. J Chromatogr B. 2005;829:136–43.Google Scholar
  119. 119.
    Li XF, Ma M, Scherban K, Tam YK. Liquid chromatography-electrospray mass spectrometric studies of ginkgolides and bilobalide using simultaneous monitoring of proton, ammonium and sodium adducts. Analyst. 2002;127:641–6.PubMedGoogle Scholar
  120. 120.
    Hua W, Ierardi T, Lesslie M, Hoffman BT, Mulvana D. Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection. J Chromatogr B. 2014;969:117–22.Google Scholar
  121. 121.
    Eichhorn P, Knepper TP. Electrospray ionization mass spectrometric studies on the amphoteric surfactant cocamidopropylbetaine. J Mass Spectrom. 2001;26:677–84.Google Scholar
  122. 122.
    Kamel AM, Brown PR, Munson B. Electrospray ionization mass spectrometry of tetracycline, oxytetracycline, chlorotetracycline, minocycline, and methacycline. Anal Chem. 1999;71:968–77.PubMedGoogle Scholar
  123. 123.
    Cerny RL, MacMillan DK, Gross ML, Mallams AK, Pramanik BN. Fast-atom bombardment and tandem mass spectrometry of macrolide antibiotics. J Am Soc Mass Spectrom. 1994;5:151–8.PubMedGoogle Scholar
  124. 124.
    Chang TT, Lay JO. Direct analysis of thin-layer chromatography spots by fast atom bombardment mass spectrometry. Anal Chem. 1984;56:109–11.Google Scholar
  125. 125.
    Siegel MM, McGahren WJ, Tomer KB, Chang TT. Applications of fast atom bombardment mass spectrometry and fast atom bombardment mass spectrometry-mass spectrometry to the maduramicins and other polyether antibiotics. Biomed Environ Mass Spectrom. 1987;14:29–38.PubMedGoogle Scholar
  126. 126.
    Volmer DA, Lock CM. Electrospray ionization and collision-induced dissociation of antibiotic polyether ionophores. Rapid Commun Mass Spectrom. 1998;12:157–64.PubMedGoogle Scholar
  127. 127.
    Wang J, Sporns P. MALDI-TOF MS quantification of coccidiostats in poultry feeds. J Agric Food Chem. 2000;48:2807–11.PubMedGoogle Scholar
  128. 128.
    Grimalt S, Pozo OJ, Marín JM, Sancho JV, Hernández F. Evaluation of different quantitative approaches for the determination of noneasily ionizable molecules by different atmospheric pressure interfaces used in liquid chromatography tandem mass spectrometry: abamectin as case of study. J Am Soc Mass Spectrom. 2005;16:1619–30.PubMedGoogle Scholar
  129. 129.
    Kamel A, Munson B. Collision induced dissociation studies of alkali metal adducts of tetracyclines and antiviral agents by electrospray ionization, hydrogen/deuterium exchange and multiple stage mass spectrometry. Eur J Mass Spectrom. 2008;14:281–97.Google Scholar
  130. 130.
    Fredenhagen A, Derrien C, Gassmann E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products, different fragmentation patterns for [M + H] +  and [M + Na] +  ions. J Nat Prod. 2005;68:385–91.PubMedGoogle Scholar
  131. 131.
    Rivera SM, Christou P, Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrom Rev. 2014;33:353–72.PubMedGoogle Scholar
  132. 132.
    van Breemen RB, Dong L, Pajkovic ND. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom. 2012;312:163–72.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Bijttebier SK, D’Hondt E, Hermans N, Apers S, Voorspoels S. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns. J Mass Spectrom. 2013;48:740–54.PubMedGoogle Scholar
  134. 134.
    van Breemen RB. Innovations in carotenoid analysis using LC-MS. Anal Chem. 1996;68:299A–304A.Google Scholar
  135. 135.
    Weesepoel Y, Vincken J-P, Pop RM, Liu K, Gruppen H. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis. J Mass Spectrom. 2013;48:862–74.PubMedGoogle Scholar
  136. 136.
    Rentel C, Strohschein S, Albert K, Bayer E. Silver-plated vitamins: a method of detecting tocopherols and carotenoids in LC/ESI-MS coupling. Anal Chem. 1998;70:4394–400.PubMedGoogle Scholar
  137. 137.
    Ma Y-C, Kim H-Y. Determination of steroids by liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom. 1997;8:1010–20.Google Scholar
  138. 138.
    Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT. Ionization of anabolic steroids by adduct formation in liquid chromatography electrospray mass spectrometry. J Mass Spectrom. 2007;42:497–516.PubMedGoogle Scholar
  139. 139.
    Kim SH, Cha EJ, Lee KM, Kim HJ, Kwon OS, Lee J. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry. Drug Test Anal. 2014;6:1174–85.PubMedGoogle Scholar
  140. 140.
    Cvacka J. Svatos A. matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2, 5-dihydroxybenzoate matrix. Rapid Commun Mass Spectrom. 2003;17:2203–7.PubMedGoogle Scholar
  141. 141.
    Horká P, Vrkoslav V, Hanus R, Pecková K, Cvačka J. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters. J Mass Spectrom. 2014;49:628–38.PubMedGoogle Scholar
  142. 142.
    Roussis SG, Proulx R. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag +  electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1761–75.PubMedGoogle Scholar
  143. 143.
    Grewal RN, Rodriquez CF, Shoeib T, Chu IK, Tu Y-P, Hopkinson AC, Siu KWM. Elimination of AgR (R = H, CH3, C6H5) from collisionally-activated argentinated amines. Eur J Mass Spectrom. 2000;6:187–92.Google Scholar
  144. 144.
    Shi T, Zhao J, Shoeib T, Siu KWM, Hopkinson AC. Fragmentation of singly charged silver/α,ω-diaminoalkane complexes: competition between the loss of H2 and AgH molecules. Eur J Mass Spectrom. 2004;10:931–40.Google Scholar
  145. 145.
    Schäfer M, Dreiocker F, Budzikiewicz H. Collision-induced loss of AgH from Ag +  adducts of alkylamines, aminocarboxylic acids and alkyl benzyl ethers leads exclusively to thermodynamically favored product ions. J Mass Spectrom. 2009;44:278–84.PubMedGoogle Scholar
  146. 146.
    Martha CT, van Zeist W-J, Bickelhaupt FM, Irth H, Niessen WMA. Tandem mass spectrometry of silver-adducted ferrocenyl catalyst complexes in continuous-flow reaction detection systems. J Mass Spectrom. 2010;45:1332–43.PubMedGoogle Scholar
  147. 147.
    Dreifuss PA, Wood GE, Roach JA, Brumley WC, Andrzejewski D, Sphon JA. Field desorption mass spectrometry of cyanogenic glycosides. Biomed Mass Spectrom. 1980;7:201–4.PubMedGoogle Scholar
  148. 148.
    Schulten H-R, Games DE. High resolution field desorption mass spectrometry. II—glycosides. Biomed Mass Spectrom. 1974;1:120–3.PubMedGoogle Scholar
  149. 149.
    Stobiecki M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochem. 2000;54:237–56.Google Scholar
  150. 150.
    Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39:1–15.PubMedGoogle Scholar
  151. 151.
    de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UATh. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112:31–63.PubMedGoogle Scholar
  152. 152.
    March R, Brodbelt J. Analysis of flavonoids: tandem mass spectrometry, computational methods, and NMR. J Mass Spectrom. 2008;43:1581–617.PubMedGoogle Scholar
  153. 153.
    Vukics V, Guttman A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev. 2010;29:1–16.PubMedGoogle Scholar
  154. 154.
    Ma YL, Vedernikova I, Van den Heuvel H, Claeys M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J Am Soc Mass Spectrom. 2000;11:136–44.PubMedGoogle Scholar
  155. 155.
    Brüll LP, Kovácik V, Thomas-Oates JE, Heerma W, Haverkamp J. Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun Mass Spectrom. 1998;12:1520–32.PubMedGoogle Scholar
  156. 156.
    Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem. 2002;74:734–40.PubMedGoogle Scholar
  157. 157.
    Kite GC, Veitch NC. Identification of common glycosyl groups of flavonoid O-glycosides by serial mass spectrometry of sodiated species. Rapid Commun Mass Spectrom. 2011;25:2579–90.PubMedGoogle Scholar
  158. 158.
    Hofmeister GE, Zhou Z, Leary JA. Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J Am Chem Soc. 1991;113:5964–70.Google Scholar
  159. 159.
    Lemoine J, Strecker G, Leroy Y, Fournet B, Ricart G. Collisional-activation tandem mass spectrometry of sodium adduct ions of methylated oligosaccharides: sequence analysis and discrimination between alpha-NeuAc-(2-3) and alpha-NeuAc-(2-6) linkages. Carbohydr Res. 1991;221:209–17.PubMedGoogle Scholar
  160. 160.
    Asam MR, Glish GL. Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J Am Soc Mass Spectrom. 1997;8:987–95.Google Scholar
  161. 161.
    Song F, Cui M, Liu Z, Yu B, Liu S. Multiple-stage tandem mass spectrometry for differentiation of isomeric saponins. Rapid Commun Mass Spectrom. 2004;18:2241–8.PubMedGoogle Scholar
  162. 162.
    Madhusudanan KP, Mathad VT, Raj SK, Bhaduri AP. Characterization of iridoids by fast atom bombardment mass spectrometry followed by collision-induced dissociation of [M + Li] +  ions. J Mass Spectrom. 2000;35:321–9.PubMedGoogle Scholar
  163. 163.
    Es-Safi NE, Kerhoas L, Ducrot PH. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:1165–275.PubMedGoogle Scholar
  164. 164.
    Ricci A, Fiorentino A, Piccolella S, Golino A, Pepi F, D’Abrosca B, Letizia M, Monaco P. Furofuranic glycosylated lignans: a gas-phase ion chemistry investigation by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:3382–92.PubMedGoogle Scholar
  165. 165.
    Ricci A, Fiorentino A, Piccolella S, D’Abrosca B, Pacifico S, Monaco P. Structural discrimination of isomeric tetrahydrofuran lignan glucosides by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:979–85.PubMedGoogle Scholar
  166. 166.
    Satterfield M, Brodbelt JS. Enhanced detection of flavonoids by metal complexation and electrospray ionization mass spectrometry. Anal Chem. 2000;72:5898–906.PubMedGoogle Scholar
  167. 167.
    Pikulski M, Brodbelt JS. Differentiation of flavonoid glycoside isomers by using metal complexation and electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2003;14:1437–53.PubMedGoogle Scholar
  168. 168.
    Satterfield M, Brodbelt JS. Structural characterization of flavonoid glycosides by collisionally activated dissociation of metal complexes. J Am Soc Mass Spectrom. 2001;12:537–49.PubMedGoogle Scholar
  169. 169.
    Zhang J, Wang J, Brodbelt JS. Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. J Mass Spectrom. 2005;40:350–63.PubMedGoogle Scholar
  170. 170.
    Zhang J, Brodbelt JS. Silver complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycosides. Anal Chem. 2005;77:1761–70.PubMedGoogle Scholar
  171. 171.
    Davis BD, Brodbelt JS. LC-MSn methods for saccharide characterization of monoglycosyl flavonoids using postcolumn manganese complexation. Anal Chem. 2005;77:1883–90.PubMedGoogle Scholar
  172. 172.
    Pikulski M, Aguilar A, Brodbelt JS. Tunable transition metal-ligand complexation for enhanced elucidation of flavonoid diglycosides by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2007;18:422–31.PubMedGoogle Scholar
  173. 173.
    Dell A, Carman HH, Tiller PR, Thomas-Oates JE: Fast atom bombardment mass spectrometric strategies for characterizing carbohydrate-containing biopolymers. Biomed Environ Mass Spectrom. 1988;16:19–24.PubMedGoogle Scholar
  174. 174.
    Fukuda M, Dell A, Fukuda MN. Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem. 1984;259:4782–91.PubMedGoogle Scholar
  175. 175.
    Aduru S, Chait BT. Californium-252 plasma desorption mass spectrometry of oligosaccharides and glycoconjugates: control of ionization and fragmentation. Anal Chem. 1991;63:1621–5.PubMedGoogle Scholar
  176. 176.
    Harvey DJ. Matrix-assisted laser desorption/ionisation mass spectrometry of oligosaccharides and glycoconjugates. J Chromatogr A. 1996;720:429–46.PubMedGoogle Scholar
  177. 177.
    Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev. 1999;18:349–450.PubMedGoogle Scholar
  178. 178.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 1999–2000. Mass Spectrom Rev. 2006;25:595–662.PubMedGoogle Scholar
  179. 179.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001–2002. Mass Spectrom Rev. 2008;27:125–201.PubMedGoogle Scholar
  180. 180.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003–2004. Mass Spectrom Rev. 2009;28:273–361.PubMedGoogle Scholar
  181. 181.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005–2006. Mass Spectrom Rev. 2011;30:1–100.PubMedGoogle Scholar
  182. 182.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom Rev. 2012;31:183–311.PubMedGoogle Scholar
  183. 183.
    Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev. 34, 2015 (in press). doi:10.1002/mas.21411.Google Scholar
  184. 184.
    Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev. 2009;28:192–206.PubMedGoogle Scholar
  185. 185.
    Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341–72.PubMedGoogle Scholar
  186. 186.
    Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 2000;11:900–15.PubMedGoogle Scholar
  187. 187.
    Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J. 1988;5:397–409.Google Scholar
  188. 188.
    Orlando R, Bush CA, Fenselau C. Structural-analysis of oligosaccharides by tandem mass- spectrometry — Collisional activation of sodium adduct ions. Biomed Environ Mass Spectrom. 1990;19:747–54.Google Scholar
  189. 189.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–61.PubMedGoogle Scholar
  190. 190.
    Griffiths WJ. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev. 2003;22:81–152.PubMedGoogle Scholar
  191. 191.
    Murphy RC, Axelsen PH. Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev. 2011;30:579–99.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem. 2014;61:192–206.Google Scholar
  193. 193.
    Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem. 2010;3:433–65.Google Scholar
  194. 194.
    Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86:161–75.PubMedGoogle Scholar
  195. 195.
    Murray KE, Schulten H-R. Field desorption mass spectrometry of lipids. I. The application of field desorption mass spectrometry to the investigation of natural waxes. Chem Phys Lipids. 1981;29:11–21.Google Scholar
  196. 196.
    Lehmann WD, Kessler M. Characterization and quantification of human plasma lipids from crude lipid extracts by field desorption mass spectrometry. Biol Mass Spectrom. 1983;10:220–6.Google Scholar
  197. 197.
    Puzo G, Tissie G, Lacave C, Aurelle H, Prome JC. Structural determination of ‘cord factor’ from a Corynebacterium diphtheriae strain by a combination of mass spectral ionization methods: field desorption cesium cationization and electron impact mass spectrometry studies. Biomed Mass Spectrom. 1978;5:699–703.PubMedGoogle Scholar
  198. 198.
    Matsubara T, Hayashi A. FAB/mass spectrometry of lipids. Prog Lipid Res. 1991;30:301–22.PubMedGoogle Scholar
  199. 199.
    Fredrickson HL, De Leeuw JW, Tas AC, Van der Greef J, La Vos GF, Boon JJ. Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutivubrum. Biomed Environ Mass Spectrom. 1989;18:96–105.Google Scholar
  200. 200.
    Adams J, Gross ML. Energy requirement for remote charge site ion decompositions and structural information from collisional activation of alkali metal cationized fatty alcohols. J Am Chem Soc. 1986;108:6915–21.Google Scholar
  201. 201.
    Contado MJ, Adams J. Collision-induced dissociations and B/E linked scans for structural determination of modified fatty acid esters. Anal Chim Acta. 1991;246:187–97.Google Scholar
  202. 202.
    Crockett, J, S,; Gross ML, Christie WW, Holman RT. Collisional activation of a series of homoconjugated octadecadienoic acids with fast atom bombardment and tandem mass spectrometry. J Am Soc Mass Spectrom. 1990;1:183–91.PubMedGoogle Scholar
  203. 203.
    Gross ML. Charge-remote fragmentation: an account of research on mechanisms and applications. Int J Mass Spectrom. 2000;200:611–24.Google Scholar
  204. 204.
    Zirrolli JA, Davoli E, Bettazzoli L, Gross ML, Murphy RC. Fast atom bombardment and collision-induced dissociation of prostaglandins and thromboxanes: Some examples of charge remote fragmentation. J Am Soc Mass Spectrom. 1990;1:325–35.PubMedGoogle Scholar
  205. 205.
    Ann Q, Adams J. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li] +  ions. J Am Soc Mass Spectrom. 1992;3:260–3.PubMedGoogle Scholar
  206. 206.
    Hsu F-F, Turk J, Stewart ME, Downing DT. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2002;13:680–95.PubMedGoogle Scholar
  207. 207.
    Levery SB, Toledo MS, Doong RL, Straus AH, Takahashi HK. Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li + adduct ions. Rapid Commun Mass Spectrom. 2000;14:551–63.PubMedGoogle Scholar
  208. 208.
    Hsu F-F, Turk J. Distinction among isomeric unsaturated fatty acids as lithium adducts by ESI-MS using low energy CID on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:600–12.PubMedGoogle Scholar
  209. 209.
    Byrdwell WC. Atmospheric-pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001;36:327–46.PubMedGoogle Scholar
  210. 210.
    Hsu F-F, Turk J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:587–99.PubMedGoogle Scholar
  211. 211.
    Domingues P, Domingues MR, Amado FM, Ferrer-Correia AJ. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:799–804.PubMedGoogle Scholar
  212. 212.
    Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B. 2009;877:2673–95.Google Scholar
  213. 213.
    Kushi Y, Handa S. Application of field desorption mass spectrometry for the analysis of sphingoglycolipids. J Biochem. 1982;91:923–31.PubMedGoogle Scholar
  214. 214.
    Kushi Y, Handa S, Kambara H, Shizukuishi K. Comparative study of acidic glycosphingolipids by field desorption and secondary ion mass spectrometry. J Biochem. 1983;94:1841–1150.PubMedGoogle Scholar
  215. 215.
    Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B. 2009;877:2696–708.Google Scholar
  216. 216.
    Ann Q, Adams J. Structure determination of sphingolipids by mass spectrometry. Mass Spectrom Rev. 1993;12:51–85.Google Scholar
  217. 217.
    Ann Q, Adams J. Structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal Chem. 1993;65:7–13.Google Scholar
  218. 218.
    Park T, Park YS, Rho JR, Kim YH. Structural determination of cerebrosides isolated from Asterias amurensis starfish eggs using high-energy collision-induced dissociation of sodium-adducted molecules. Rapid Commun Mass Spectrom. 2011;25:572–8.PubMedGoogle Scholar
  219. 219.
    Fuchs B. Analysis of phospolipids and glycolipids by thin-layer chromatography-matrix-assisted laser desorption and ionization mass spectrometry. J Chromatogr A. 2012;1259:62–73.PubMedGoogle Scholar
  220. 220.
    Fuchs B, Schiller J. Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Technol. 2009;111:83–98.Google Scholar
  221. 221.
    Gode D, Volmer DA. Lipid imaging by mass spectrometry—a review. Analyst. 2013;138:1289–315.PubMedGoogle Scholar
  222. 222.
    Rujoi M, Estrada R, Yappert MC. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem. 2004;76:1657–63.PubMedGoogle Scholar
  223. 223.
    Ho YP, Huang PC, Deng KH. Metal ion complexes in the structural analysis of phospholipids by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:114–21.PubMedGoogle Scholar
  224. 224.
    Christie WW. Separation of molecular species of triacylglycerols by HPLC with a silver ion column. J Chromatogr A. 1988;454:273–84.Google Scholar
  225. 225.
    Sandra P, Medvedovici A, Zhao Y, David F. Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. J Chromatogr A. 2002;974:231–41.PubMedGoogle Scholar
  226. 226.
    Lísa M, Velínská H, Holčapek M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem. 2009;81:3903–30.PubMedGoogle Scholar
  227. 227.
    Havrilla CM, Hachey DL, Porter NA. Coordination (Ag + ) ion spray—mass spectrometry of peroxidation products of cholesterol linoleate and cholesterol arachidonate: high-performance liquid chromatography—mass spectrometry analysis of peroxide products from polyunsaturated lipid autoxidation. J Am Chem Soc. 2000;122:8042–55.Google Scholar
  228. 228.
    Seal JR, Porter NA. Liquid chromatography coordination ion-spray mass spectrometry (LC-CIS-MS) of docosahexaenoate ester hydroperoxides. Anal Bioanal Chem. 2004;378:1007–13.PubMedGoogle Scholar
  229. 229.
    Yin H, Brooks JD, Gao L, Porter NA, Morrow JD. Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem. 2007;282:29890–1.PubMedGoogle Scholar
  230. 230.
    Roepstorff P, Nielsen PF, Klarskov K, Højrup P. Applications of plasma desorption mass spectrometry in peptide and protein chemistry. Biomed Environ Mass Spectrom. 1988;16:9–18.PubMedGoogle Scholar
  231. 231.
    Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988;16:99–111.PubMedGoogle Scholar
  232. 232.
    Desiderio DM, Sabbatini JZ. Field desorption collision activation linked scanning mass spectrometry of underivatized oligopeptides. Biol Mass Spectrom. 2005;8:565.Google Scholar
  233. 233.
    Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem. 1990;62:882–99.PubMedGoogle Scholar
  234. 234.
    Smith RD, Loo JA, Ogorzalek Loo RR, Busman M, Udseth HR. Principles and practice of electrospray ionization-mass spectrometry for large polypeptides and proteins. Mass Spectrom Rev. 1991;10:359–452.Google Scholar
  235. 235.
    Grese RP, Cerny RL, Gross ML. Metal ion-peptide interactions in the gas phase: A tandem mass spectrometry study of alkali metal cationized peptides. J Am Chem Soc. 1989;111:2835–42.Google Scholar
  236. 236.
    Sabareesh V, Balaram P. Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Rapid Commun Mass Spectrom. 2006;20:618–28.PubMedGoogle Scholar
  237. 237.
    Deutsch J, Gilon C, Chorev M. Field desorption mass spectrometry. II. Potassium cationization field desorption mass spectrometry of some penta- and hexapeptides derived from substance P. Int J Pept Protein Res. 1981;18:203–7.PubMedGoogle Scholar
  238. 238.
    Draper WM, Xu D, Perera SK. Electrolyte-induced ionization suppression and microcystin toxins: ammonium formate suppresses sodium replacement ions and enhances protiated and ammoniated ions for improved specificity in quantitative LC-MS-MS. Anal Chem. 2009;81:4153–60.PubMedGoogle Scholar
  239. 239.
    Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.PubMedGoogle Scholar
  240. 240.
    Mouls L, Aubagnac J-L, Martinez J, Enjalbal C. Low energy peptide fragmentations in an ESI-Q-TOF type mass spectrometer. J Proteome Res. 2007;6:1378–91.PubMedGoogle Scholar
  241. 241.
    Roepstorff P, Fohlmann J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11:601.PubMedGoogle Scholar
  242. 242.
    Hunt DF, Yates JR III, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986;83:6233–7.PubMedCentralPubMedGoogle Scholar
  243. 243.
    Papayannopoulos IA. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev. 1995;14:49–73.Google Scholar
  244. 244.
    Jensen ON, Podtelejnikov AV, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem. 1997;69:4741–50.PubMedGoogle Scholar
  245. 245.
    Yates JR III, Eng JK, McCormack AL, Schieltz D. Methods to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995;67:1426–38.PubMedGoogle Scholar
  246. 246.
    Liska AJ, Shevchenko A. Combining mass spectrometry with database interrogation strategies in proteomics. Trends Anal Chem. 2003;22:291–8.Google Scholar
  247. 247.
    Yates JR III. Mass spectrometry and the age of proteome. J Mass Spectrom. 1998;33:1–19.PubMedGoogle Scholar
  248. 248.
    Kinter M, Sherman NE. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley Interscience; 2000. ISBN 978-0-47132-249–8.Google Scholar
  249. 249.
    Zhang Y, Fonslow BR, Shan B, Baek MC; Yates JR 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343–94.PubMedCentralPubMedGoogle Scholar
  250. 250.
    Liebler DC. Introduction to proteomics: tools for the new biology. Totowa: Humana Press Inc; 2002. ISBN 978-0-89603-991–9.Google Scholar
  251. 251.
    Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortesen P, Shevchenk A, Boucherie H, Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels. Proc Natl Acad Sci U S A. 1996;93:14440–5.PubMedCentralPubMedGoogle Scholar
  252. 252.
    Cramer R, Gobom J, Nordhoff E. High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2005;2:407–20.PubMedGoogle Scholar
  253. 253.
    Hardouin J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom Rev. 2007;26:672–82.PubMedGoogle Scholar
  254. 254.
    Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.PubMedGoogle Scholar
  255. 255.
    Zhurov KO, Fornelli L, Wopdrich MD, Laskay ÜA, Tsybin YO. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev. 2013;42:5014–30.PubMedGoogle Scholar
  256. 256.
    Kulik W, Heerma W, Terlouw JK. A novel fragmentation process in the fast-atom bombardment/tandem mass spectra of peptides cationized with Na + , determining the identity of the C-terminal amino acid. Rapid Commun Mass Spectrom. 1989;3:276–9.Google Scholar
  257. 257.
    Lin T, Glish GL. C-terminal peptide sequencing via multistage mass spectrometry. Anal Chem. 1998;70:5162–5.PubMedGoogle Scholar
  258. 258.
    Feng WY, Gronert S, Fletcher KA, Warres A, Lebrilla CB. The mechanism of C-terminal fragments in alkali metal ion complexes of peptides. Int J Mass Spectrom. 2003;222:117–34.Google Scholar
  259. 259.
    Anbalagan V, Silva ATM, Rajagopalachary S, Bulleigh K, Talaty ER, Van Stipdonk MJ. Influence of “Alternative” C-terminal amino acids on the formation of [b3 + 17 + Cat] +  products from metal cationized synthetic tetrapeptides. J Mass Spectrom. 2004;39:495–504.PubMedGoogle Scholar
  260. 260.
    Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem. 2005;38:335–50.PubMedGoogle Scholar
  261. 261.
    Schulten HR, Beckey HD. High resolution field desorption mass spectrometry-I: nucleosides and nucleotides. Org Mass Spectrom. 1973;7:861–7.Google Scholar
  262. 262.
    McNeil CJ, Macfarlaine RD. Observation of a fully protected oligonucleotide dimer at m/z 12637 by californium-252 plasma desorption mass spectrometry. J Am Chem Soc. 1981;103:1609–10.Google Scholar
  263. 263.
    Grotjahn L, Taylor LCE. The use of signal averaging techniques for the quantitation and mass measurement of high molecular weight compounds using fast atom bombardment mass spectrometry. Org Mass Spectrom. 1985;20:146–52.Google Scholar
  264. 264.
    Nordhoff E, Kirpekar F, Roepstorff P. Mass spectrometry of nucleic acids. Mass Spectrom Rev. 1996;15:67–138.Google Scholar
  265. 265.
    Schürch S. Characterization of nucleic acids by tandem mass spectrometry—The second decade (2004-2013): from DNA to RNA and modified sequences. Mass Spectrom Rev. 2015 (in press). doi:10.1002/mas.21442.Google Scholar
  266. 266.
    van Dongen WD, Niessen WMA. Bioanalytical LC-MS of therapeutic oligonucleotides. Bioanalysis. 2011;3:541–64.PubMedGoogle Scholar
  267. 267.
    Huber CG, Oberacher H. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2001;20:310–43.PubMedGoogle Scholar
  268. 268.
    Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. 2014;33:302–31.PubMedGoogle Scholar
  269. 269.
    Bleicher K, Bayer E. Various factors influencing the signal intensity of oligonucleotides in electrospray mass spectrometry. Biol Mass Spectrom. 1994;23:320–2.PubMedGoogle Scholar
  270. 270.
    Castleberry CM, Rodicio LP, Limbach PA. Electrospray ionization mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem. 2008. doi:10.1002/0471142700.nc1002s35.Google Scholar
  271. 271.
    Castleberry CM, Chou CW, Limbach PA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem. 2008. doi:10.1002/0471142700.nc1001s33.1.Google Scholar
  272. 272.
    Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal Chem. 1997;69:1320–5.PubMedGoogle Scholar
  273. 273.
    Sauer S. The essence of DNA sample preparation for MALDI mass spectrometry. J Biochem Biophys Methods. 2007;70:311–8.PubMedGoogle Scholar
  274. 274.
    McLuckey SA, Van Berkel GJ, Glish GL. Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom. 1992;3:60–70.PubMedGoogle Scholar
  275. 275.
    Murray KK. DNA sequencing by mass spectrometry. J Mass Spectrom. 1996;31:1203–15.PubMedGoogle Scholar
  276. 276.
    Xiang Y, Abliz Z, Takayama M. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15:689–96.PubMedGoogle Scholar
  277. 277.
    Boschenok J, Sheil MM. Electrospray tandem mass spectrometry of nucleotides. Rapid Commun Mass Spectrom. 1996;10:144–9.PubMedGoogle Scholar
  278. 278.
    Stano M, Flosadottir HD, Ingolfsson O. Effective quenching of fragment formation in negative ion oligonucleotide matrix-assisted laser desorption/ionization mass spectrometry through sodium adduct formation. Rapid Commun Mass Spectrom. 2006;20:3498–502.PubMedGoogle Scholar
  279. 279.
    Wong SF, Meng CK, Fenn JB. Multiple charging in electrospray ionization of poly(ethylene glycols). J Phys Chem. 1988;92:546–50.Google Scholar
  280. 280.
    Varray S, Aubagnac J-L, Lamaty F, Lazaro R, Martinez J, Enjalbal C. Poly(ethyleneglycol) in electrospray ionization (ESI) mass spectrometry. Analusis. 2000;28:263–8.Google Scholar
  281. 281.
    Mincheva Z, Hadjieva P, Kalcheva V, Seraglia R, Traldi P, Przybylski M. Matrix-assisted laser desorption/ionization, fast atom bombardment and plasma desorption mass spectrometry of polyethylene glycol esters of (2-benzothiazolon-3-yl)acetic acid. J Mass Spectrom. 2001;26:626–32.Google Scholar
  282. 282.
    González-Valdez J, Rito-Palomares M, Benavides J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for “PEGylaided” bioprocesses. Anal Bioanal Chem. 2012;403:2225–35.PubMedGoogle Scholar
  283. 283.
    Ayorinde FO, Eribo BE, Johnson JH Jr, Elhilo E. Molecular distribution of some commercial nonylphenol ethoxylates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1124–8.PubMedGoogle Scholar
  284. 284.
    Lattimer RP. Tandem mass spectrometry of lithium-attachment ions from polyglycols. J Am Soc Mass Spectrom. 1992;3:225–34.PubMedGoogle Scholar
  285. 285.
    Lattimer RP. Tandem mass spectrometry of poly(ethylene glycol) lithium-attachment ions. J Am Soc Mass Spectrom. 1994;5:1072–80.PubMedGoogle Scholar
  286. 286.
    Bahr U, Deppe. A, Karas M, Hillenkamp F, Giessmann U. Mass spectrometry of synthetic polymers by UV-matrix-assisted laser desorption/ionization. Anal Chem. 1992;64:2866–9.Google Scholar
  287. 287.
    Brandt H, Ehmann T, Otto M. Toward prediction: using chemometrics for the optimization of sample preparation in MALDI-TOF MS of synthetic polymers. Anal Chem. 2010;82:8169–75.PubMedGoogle Scholar
  288. 288.
    Rizzarelli P, Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta. 2014;808:18–43.PubMedGoogle Scholar
  289. 289.
    Altuntaş E, Schubert US. “Polymeromics”: mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Anal Chim Acta. 2014;808:56–69.PubMedGoogle Scholar
  290. 290.
    Wesdemiotis C, Solak N, Polce MJ, Dabney DE, Chaicharoen K, Katzenmeyer BC. Fragmentation pathways of polymer ions. Mass Spectrom Rev. 2011;30:523–59.PubMedGoogle Scholar
  291. 291.
    Crecelius AC, Baumgaertel A, Schubert US. Tandem mass spectrometry of synthetic polymers. J Mass Spectrom. 2009;44:1277–86.PubMedGoogle Scholar
  292. 292.
    Crecelius AC, Vitz J, Schubert US. Mass spectrometric imaging of synthetic polymers. Anal Chim Acta. 2014;808:10–7.PubMedGoogle Scholar
  293. 293.
    Tintaru A, Chendo C, Wang Q, Viel S, Quéléver G, Peng L, Posocco P, Pricl S, Charles L. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization—a mass spectrometry, ion mobility and molecular modeling study. Anal Chim Acta. 2014;808:163–74.PubMedGoogle Scholar
  294. 294.
    Terrier P, Desmazières B, Tortajada J, Buchmann W. APCI/APPI for synthetic polymer analysis. Mass Spectrom Rev. 2011;30:854–74.PubMedGoogle Scholar
  295. 295.
    Flick TG, Merenbloom SI, Williams ER. Effects of metal ion adduction on the gas-phase conformations of protein ions. J Am Soc Mass Spectrom. 2013;24:1654–62.PubMedCentralPubMedGoogle Scholar
  296. 296.
    Carlton DD Jr, Schug KA. A review on the interrogation of peptide-metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta. 2011;686:19–39.PubMedGoogle Scholar
  297. 297.
    Jaswal SS. Biological insights from hydrogen exchange mass spectrometry. Biochim Biophys Acta. 1834;2013:1188–201.Google Scholar
  298. 298.
    Balasubramaniam D, Komives EA. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochim Biophys Acta. 1834;2013:1202–9.Google Scholar
  299. 299.
    Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJ. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010;39:1633–55.PubMedGoogle Scholar
  300. 300.
    Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6:281–94.PubMedGoogle Scholar
  301. 301.
    Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. Mass Spectrom Rev. 33, 2014, doi:10.1002/mas.21450.Google Scholar
  302. 302.
    Konermann L, Vahidi S, Sowole MA. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal Chem. 2014;86:213–32.PubMedGoogle Scholar
  303. 303.
    Seo Y, Schenauer MR, Leary JA. Biologically relevant metal-cation binding induces conformational changes in heparin oligosaccharides as measured by ion mobility mass spectrometry. Int J Mass Spectrom. 2011;303:191–8.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.hyphen MassSpecLeidenThe Netherlands

Personalised recommendations