Skip to main content

Formulation of Delivery Systems for Photosensitisers Used in Oral Cavity Photodynamic Therapy

  • Chapter
  • First Online:
Oral Mucosal Drug Delivery and Therapy

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1412 Accesses

Abstract

Due to microbial resistance to conventional treatments and the loss of functionality associated with surgical excision of neoplasias of the oral cavity, interest has arisen in the development of new treatment regimens. One such alternative treatment is photodynamic therapy (PDT), in which a combination of a photosensitising drug and visible light causes selective destruction of selected cells. Due to the highly coloured nature of photosensitisers and the potential for staining of teeth, lips and buccal mucosa, the administration of photosensitisers to humans as a liquid mouthwash is undesirable. Targeted delivery of the photosensitiser directly to the site of infection/neoplastic disease should be the aim. This chapter, therefore, reports on advances in drug delivery of photosensitising drugs to the oral cavity. The mechanism of action of PDT is reviewed, as are laboratory and clinical studies. While some advanced drug-delivery systems have been designed and evaluated, clinical trials of such devices are scarce. Investment will be required from industry to take this area of research forward, to the benefit of patients worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma SK, Mroz P, Dai T, Huang YY, St Denis TG, Hamblin MR (2012) Photodynamic therapy for cancer and for infections: what is the difference? Isr J Chem 8–9:691–705

    Article  Google Scholar 

  2. Darlenski R, Fluhr JW (2013) Photodynamic therapy in dermatology: past, present, and future. J Biomed Opt 18(6):061208. doi:10.1117/1.JBO.18.6.061208

    Article  PubMed  Google Scholar 

  3. De Rosa FS, Bentley MVLB (2000) Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res 17:1447–1455

    Article  CAS  PubMed  Google Scholar 

  4. Fritsch C, Lang K, Neuse W, Ruzicka T, Lehmann P (1998) Photodynamic diagnosis and therapy in dermatology. Skin Pharmacol Appl Skin Phys 11:358–373

    Article  CAS  Google Scholar 

  5. Daniell MD, Hill JS (1991) A history of photodynamic therapy. Austral New Zeal J Surg 61:340–348

    Article  CAS  Google Scholar 

  6. Moan J, Peng Q (2003) An outline of the hundred-year history of PDT. Anticancer Res 23:3591–3600

    PubMed  Google Scholar 

  7. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Article  CAS  PubMed  Google Scholar 

  9. http://www.ncbi.nlm.nih.gov/pubmed. Accessed 1 Feb 2013

  10. Kalka K, Merk H, Mukhtar H (2000) Photodynamic therapy in dermatology. J Am Acad Dermatol 42:389–413

    Article  CAS  PubMed  Google Scholar 

  11. Konan YN, Gurny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106

    Article  CAS  PubMed  Google Scholar 

  12. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  PubMed  Google Scholar 

  13. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic, London

    Google Scholar 

  14. Isaacs NS (1992) Physical organic chemistry. Longman Scientific and Technical, Essex

    Google Scholar 

  15. Oschner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 39:1–18

    Article  Google Scholar 

  16. Moan J, Streckyte G, Bagdonas S, Bech O, Berg K (1997) Photobleaching of protoporphyrin IX in cells incubated eith 5-aminolevulinic acid. Int J Cancer 70:90–97

    Article  CAS  PubMed  Google Scholar 

  17. Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B 6:343–347

    Article  CAS  Google Scholar 

  18. Kalka K, Merk H, Mukhtar H (2000) Photodynamic therapy in dermatology. J Am Acad Dermatol 42:389–413

    Article  CAS  PubMed  Google Scholar 

  19. Bonnett R, Djelal BD, Nguyen A (2001) Physical and chemical studies related to the development of m-THPC (Foscan®) for the photodynamic therapy (PDT) of tumours. J Porphyrins Phthalocyanines 5:652–661

    Article  CAS  Google Scholar 

  20. Meijnders PJN, Star WM, De Bruijn RS, Treurniet-Donker AD, Van Mierlo MJM, Wijthoff SJM, Naafs B, Beerman H, Levendag PC (1996) Clinical results of photodynamic therapy for superficial skin malignancies or actinic keratosis using topical 5-aminolevulinic acid. Lasers Med Sci 11:123–131

    Article  Google Scholar 

  21. Kennedy JC, Marcus SL, Pottier RH (1996) Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg 14:289–304

    CAS  PubMed  Google Scholar 

  22. Kennedy JC, Pottier RH (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B 14:275–292

    Article  CAS  PubMed  Google Scholar 

  23. Gantchev TG, Brasseur N, Van Lier JE (1996) Combination toxicity of etoposide (VP-16) and photosensitisation with water-soluble aluminium phthalocyanine in K562 human leukaemic cells. Br J Cancer 74:1570–1577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kessel D (1999) Transport and localisation of m-THPC in vitro. Int J Clin Pract 53:263–267

    CAS  PubMed  Google Scholar 

  25. Ochsner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 39:1–18

    Article  CAS  PubMed  Google Scholar 

  26. Pottier R, Kennedy JC (1990) New trends in photobiology: the possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue. J Photochem Photobiol B 8:1–16

    Article  CAS  PubMed  Google Scholar 

  27. Jori G, Beltramini M, Reddi E, Salvato B, Pagnan A, Ziron L, Tomio L, Tsanov T (1984) Evidence for a major role of plasma lipoproteins as haematoporphyrin carriers in vivo. Cancer Lett 24:291–297

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs C, Riesenberg R, Siegert J, Baumgartner R (1997) pH-Dependent formation of 5-aminolevulinic acid-induced protoporphyrin IX in fibrosarcoma cells. J Photochem Photobiol B 40:49–54

    Article  CAS  PubMed  Google Scholar 

  29. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    Article  CAS  PubMed  Google Scholar 

  30. Piot B, Rousset N, Lenz P, Eleout S, Carre J, Vonarx V, Bourre L, Patrice T (2001) Enhancement of 5-aminolevulinic acid-photodynamic therapy in vivo by decreasing tumour pH with glucose and amiloride. Laryngoscope 111:2205–2213

    Article  CAS  PubMed  Google Scholar 

  31. Barrett AJ, Kennedy JC, Jones RA, Nadeau P, Pottier RH (1990) The effect of tissue and cellular pH on the selective biodistribution of porphyrin-type photochemotherapeutic agents: a volumetric titration study. J Photochem Photobiol B 6:309–323

    Article  CAS  PubMed  Google Scholar 

  32. Calzavara-Pinton PG, Rossi MT, Aronson E, Sala R (2013) A retrospective analysis of real-life practice of off-label photodynamic therapy using methyl aminolevulinate (MAL-PDT) in 20 Italian dermatology departments. Part 1: inflammatory and aesthetic indications. Photochem Photobiol Sci 12:148–157

    Article  CAS  PubMed  Google Scholar 

  33. Vysloužilová D, Kolář P, Matušková V, Vlková E (2013) Photodynamic therapy with verteporfin in treatment of wet form ARMD—long term results]. Cesk Slov Oftalmol 68:98–101

    Google Scholar 

  34. Wainwright M (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28

    Article  CAS  PubMed  Google Scholar 

  35. Wainwright M (2013) Photodynamic medicine and infection control. J Antimicrob Chemother 67:787–788

    Article  Google Scholar 

  36. Hamblin MR (2013) Antimicrobial photodynamic therapy and photodynamic inactivation, or killing bugs with dyes and light–a symposium-in-print. Photochem Photobiol 88:496–498

    Article  Google Scholar 

  37. Donnelly RF, McCarron PA, Tunney MM, Woolfson AD (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B 86:59–69

    Article  CAS  PubMed  Google Scholar 

  38. Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Laser Med Sci 17:173–186

    Article  CAS  Google Scholar 

  39. Gannon MJ, Brown SB (1999) Photodynamic therapy and its applications in gynaecology. Br J Obstet Gynaecol 106:1246–1254

    Article  CAS  PubMed  Google Scholar 

  40. Schweitzer VG, Visscher D (1990) Photodynamic therapy for treatment of AIDS-related oral Kaposi’s Sarcoma. Otolaryngol Head Neck Surg 102:639–649

    CAS  PubMed  Google Scholar 

  41. Hebeda KM, Huizing MT, Brouwer PA, Van der Meulen FW, Hulsebosch HJ, Reiss P, Oosting JH, Veenhof CHN, Bakker PJM (1995) Photodynamic therapy in AIDS-related cutaneous Kaposi’s Sarcoma. J Acquir Immune Defic Syndr Hum Retrovirol 10:61–70

    Article  CAS  PubMed  Google Scholar 

  42. Kvaal SI, Angell-Petersen E, Warloe T (2013) Photodynamic treatment of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 115:62–70

    Article  PubMed  Google Scholar 

  43. Sadaksharam J, Nayaki KP, Selvam NP (2013) Treatment of oral lichen planus with methylene blue mediated photodynamic therapy—a clinical study. Photodermatol Photoimmunol Photomed 28:97–101

    Article  Google Scholar 

  44. Kawczyk-Krupka A, Waśkowska J, Raczkowska-Siostrzonek A, Kościarz-Grzesiok A, Kwiatek S, Straszak D, Latos W, Koszowski R, Sieroń A (2012) Comparison of cryotherapy and photodynamic therapy in treatment of oral leukoplakia. Photodiagnosis Photodyn Ther 9:148–55

    Article  PubMed  Google Scholar 

  45. Donnelly RF, McCarron PA, Ma LW, Juzenas P, Iani V, Woolfson AD, Zawislak AA, Moan J (2006) Facilitated delivery of ALA to inaccessible regions via bioadhesive patch systems. J Environ Pathol Toxicol Oncol 25:1–14

    Article  Google Scholar 

  46. Teichert MC, Jones JW, Usacheva MN, Biel MA (2002) Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:155

    Article  CAS  PubMed  Google Scholar 

  47. Lin J, Bi LJ, Zhang ZG, Fu YM, Dong TT (2010) Toluidine blue-mediated photodynamic therapy of oral wound infections in rats. Las Med Sci 25:233

    Article  CAS  Google Scholar 

  48. British Society of Periodontology website; http://www.bsperio.org.uk/, Periodontal disease and treatment. Accessed 30 Jan 2013

  49. Dobson J, Wilson M (1992) Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch Oral Biol 37:883

    Article  CAS  PubMed  Google Scholar 

  50. Lauro FM, Pretto P, Covolo L, Jori G, Bertoloni G (2002) Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem Photobiol Sci 1:468–470

    Article  CAS  PubMed  Google Scholar 

  51. Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M (1997) Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro. Photochem Photobiol 65:1026

    Article  CAS  PubMed  Google Scholar 

  52. Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J (1999) An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 50:1

    Article  CAS  PubMed  Google Scholar 

  53. Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47:932–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sigusch BW, Pfitzner A, Albrecht V, Glockmann E (2005) Efficacy of photodynamic therapy on inflammatory signs and two selected periodontopathogenic species in a beagle dog model. J Periodontol 76:1100

    Article  CAS  PubMed  Google Scholar 

  55. Andersen R, Loebel N, Hammond D, Wilson M (2007) Treatment of periodontal disease by photodisinfection compared to scaling and root planing. J Clin Dent 18:34–38

    PubMed  Google Scholar 

  56. Bonsor SJ, Nichol R, Reid TM, Pearson GJ (2006) Microbiological evaluation of photo-activated disinfection in endodontics (an in vivo study). Br Dent J 200:337–41

    Article  CAS  PubMed  Google Scholar 

  57. Jones DS, Lorimer CJ, Andrews GP, McCoy CP, Gorman SP (2007) An examination of the thermorheological and drug release properties of zinc tetraphenylporphyrin-containing thermoresponsive hydrogels, designed as light activated antimicrobial implants. Chem Eng Sci 62:990–999

    Article  CAS  Google Scholar 

  58. Lulic M, Gorog IL, Salvi GE, Ramseier CA, Mattheos N, NP Lang (2009) One-year outcomes of repeated adjunctive photodynamic therapy during periodontal maintenance: a proof-of-principle randomized-controlled clinical trial. J Clin Periodont 36:661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan F. Donnelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Donnelly, R. (2015). Formulation of Delivery Systems for Photosensitisers Used in Oral Cavity Photodynamic Therapy. In: Rathbone, M., Senel, S., Pather, I. (eds) Oral Mucosal Drug Delivery and Therapy. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7558-4_9

Download citation

Publish with us

Policies and ethics