Skip to main content

Oxide Based Memristive Nanodevices

  • Chapter
  • First Online:
Emerging Non-Volatile Memories

Abstract

Transition metal oxide thin films play an indispensable role in nanoelectronic and nanoionic devices [1–3] proposed for the next generation non-volatile memory [4–14], neuromorphic computing [15], stateful logic [16] and hybrid CMOS–Memristor circuits [17]. The promise of metal oxide thin films comes from their wide range of electrical properties, ranging from insulating, semiconducting, metallic to even superconducting behavior [3] with exquisite dependence on the doping level. A trace level of compositional change in oxides induces a large amount of defects, which serve as native dopants in the oxide films and dramatically change their conductance [18]. Microscopically in a thin film device, the slight compositional change is in the embodiment of ionic motion, which gives rise to memristive switching under an electric field [19–21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Nat Mater 8, 485 (2009)

    Article  Google Scholar 

  2. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  3. D.P. Norton, Mater Sci Eng R Rep 43, 139 (2004)

    Article  Google Scholar 

  4. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat Mater 5, 312 (2006)

    Article  Google Scholar 

  5. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, I. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M. Oshima, IEDM Tech. Dig. 293 (2008)

    Google Scholar 

  6. H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.J. Tsai, IEDM Tech. Dig. 297 (2008)

    Google Scholar 

  7. M.J. Sanchez, M.J. Rozenberg, I.H. Inoue, Appl. Phys. Lett. 91, 252101 (2007)

    Article  Google Scholar 

  8. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Adv. Mater. 20, 1154 (2008)

    Article  Google Scholar 

  9. S.F. Karg, G.I. Meijer, J.G. Bednorz, C.T. Rettner, A.G. Schrott, E.A. Joseph, C.H. Lam, M. Janousch, U. Staub, F. La Mattina, S.F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, D. Caimi, IBM J. Res. Dev. 52, 481 (2008)

    Article  Google Scholar 

  10. C. Park, S.H. Jeon, S.C. Chae, S. Han, B.H. Park, S. Seo, D.W. Kim, Appl. Phys. Lett. 93, 042102 (2008)

    Article  Google Scholar 

  11. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Google Scholar 

  12. J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754 (2009)

    Article  Google Scholar 

  13. C.L. Liu, S.C. Chae, J.S. Lee, S.H. Chang, S.B. Lee, D.W. Kim, C.U. Jung, S. Seo, S.E. Ahn, B. Kahng, T.W. Noh, J. Phys. D Appl. Phys. 42, 015506 (2009)

    Article  Google Scholar 

  14. B.J. Choi, J. Appl. Phys. 98, 033715 (2005)

    Article  Google Scholar 

  15. G.S. Snider, Spike-timing-dependent learning in memristive nanodevices (IEEE, Anaheim, CA, 2008), p. 85

    Google Scholar 

  16. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464, 873

    Google Scholar 

  17. Q.F. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X.M. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Nano Lett. 9, 3640 (2009)

    Article  Google Scholar 

  18. P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897 (1999)

    Article  Google Scholar 

  19. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  Google Scholar 

  20. L.O. Chua, IEEE Trans. Circuit Theory CT-18, 507 (1971)

    Article  Google Scholar 

  21. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)

    Article  Google Scholar 

  22. E.M. Vogel, Nat. Nanotechnol. 2, 25 (2007)

    Article  Google Scholar 

  23. M. Aono, Nature 433, 47 (2005)

    Article  Google Scholar 

  24. G.E. Moore, Electronics 38, 114 (1965)

    Google Scholar 

  25. M. Carver, Analog VLSI and neural systems (Addison-Wesley Longman, Boston, MA, 1989)

    Google Scholar 

  26. K. Boahen, Sci. Am. 292, 56 (2005)

    Article  Google Scholar 

  27. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  Google Scholar 

  28. Y. Watanabe, J.G. Bednorz, A. Bietsch, G. Ch, D. Widmer, A. Beck, S.J. Wind, Appl. Phys. Lett. 78, 3738 (2001)

    Article  Google Scholar 

  29. K.L. Chopra, J. Appl. Phys. 36, 184 (1965)

    Article  Google Scholar 

  30. J.G. Simmons, R.R. Verderber, Proc. R. Soc. Lond. A 301, 77 (1967)

    Article  Google Scholar 

  31. M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004)

    Article  Google Scholar 

  32. X. Chen, N. Wu, J. Strozier, A. Ignatiev, Appl. Phys. Lett. 89, 063507 (2006)

    Article  Google Scholar 

  33. R. Fors, S.I. Khartsev, A.M. Grishin, Phys. Rev. B 71, 045305 (2005)

    Article  Google Scholar 

  34. C. Rohde, Appl. Phys. Lett. 86, 262907 (2005)

    Article  Google Scholar 

  35. S.Q. Liu, N.J. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000)

    Article  Google Scholar 

  36. Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, A. Ignatiev, Phys. Rev. Lett. 98, 146403 (2007)

    Article  Google Scholar 

  37. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 42904 (2006)

    Article  Google Scholar 

  38. J.R. Jameson, Appl. Phys. Lett. 91, 112101 (2007)

    Article  Google Scholar 

  39. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004)

    Article  Google Scholar 

  40. S. Tsui, Y.Q. Wang, Y.Y. Xue, C.W. Chu, Appl. Phys. Lett. 89 (2006)

    Google Scholar 

  41. A. Baikalov, Appl. Phys. Lett. 83, 957 (2003)

    Article  Google Scholar 

  42. K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Hwang, Appl. Phys. Lett. 91, 012907 (2007)

    Article  Google Scholar 

  43. T.K.M. Fujii, A. Sawa, H. Akoh, Appl. Phys. Lett. 86, 012107 (2005)

    Article  Google Scholar 

  44. K. Tsunoda, Appl. Phys. Lett. 90, 113501 (2007)

    Article  Google Scholar 

  45. D. Lee, Appl. Phys. Lett. 90, 122104 (2007)

    Article  Google Scholar 

  46. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  47. G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg, D.L. Olynick, Y. Chen, W.M. Tong, R.S. Williams, Nano Lett. 4, 1225 (2004)

    Article  Google Scholar 

  48. G.Y. Jung, E. Johnston-Halperin, W. Wu, Z.N. Yu, S.Y. Wang, W.M. Tong, Z.Y. Li, J.E. Green, B.A. Sheriff, A. Boukai, Y. Bunimovich, J.R. Heath, R.S. Williams, Nano Lett. 6, 351 (2006)

    Article  Google Scholar 

  49. K. Szot, W. Speier, W. Eberhardt, Appl. Phys. Lett. 60, 1190 (1992)

    Article  Google Scholar 

  50. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  51. A. Weibel, R. Bouchet, P. Knauth, Solid State Ionics 177, 229 (2006)

    Article  Google Scholar 

  52. A. Shkabko, M.H. Aguirre, I. Marozau, T. Lippert, A. Weidenkaff, Appl. Phys. Lett. 95, 3 (2009)

    Article  Google Scholar 

  53. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  Google Scholar 

  54. A.A. Talin, R.S. Williams, B.A. Morgan, K.M. Ring, K.L. Kavanagh, Phys. Rev. B 49, 16474 (1994)

    Article  Google Scholar 

  55. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

  56. J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754 (2009)

    Article  Google Scholar 

  57. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.R. Tseng, J.F. Stoddart, J.R. Heath, Nature 445, 414 (2007)

    Article  Google Scholar 

  58. S.H. Jo, K.H. Kim, W. Lu, Nano Lett. 9, 870 (2009)

    Article  Google Scholar 

  59. C.P. Collier, E.W. Wong, M. Belohradsk yacute, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Science 285, 391 (1999)

    Article  Google Scholar 

  60. J. Borghetti, Z.Y. Li, J. Straznicky, X.M. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, Proc. Natl. Acad. Sci. USA 106, 1699 (2009)

    Article  Google Scholar 

  61. G.S. Snider, Nanotechnology 18, 13 (2007)

    Google Scholar 

  62. W. Lu, C.M. Lieber, Nat. Mater. 6, 841 (2007)

    Article  Google Scholar 

  63. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)

    Article  Google Scholar 

  64. J.C. Scott, Science 304, 62 (2004)

    Article  Google Scholar 

  65. T.W. Hickmott, J. Appl. Phys. 33, 2669 (1962)

    Article  Google Scholar 

  66. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)

    Article  Google Scholar 

  67. D.S. Jeong, H. Schroeder, R. Waser, Electrochem. Solid State Lett. 10, G51 (2007)

    Article  Google Scholar 

  68. J. Wu, K. Mobley, R.L. McCreery, J. Chem. Phys. 126 (2007)

    Google Scholar 

  69. W.R. McGovern, F. Anariba, R.L. McCreery, J. Electrochem. Soc. 152, E176 (2005)

    Article  Google Scholar 

  70. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Appl. Phys. Lett. 85, 5655 (2004)

    Article  Google Scholar 

  71. M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005)

    Article  Google Scholar 

  72. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)

    Article  Google Scholar 

  73. R. Waser, Nanoelectronics and information technology. 2nd edn. (Wiley–VCH, Weinheim, 2005)

    Google Scholar 

  74. G.I. Meijer, Science 319, 1625 (2008)

    Article  Google Scholar 

  75. M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Appl. Phys. Lett. 88, 033510 (2006)

    Article  Google Scholar 

  76. A. Chen, S. Haddad, Y.C. Wu, T.N. Fang, S. Kaza, Z. Lan, Appl. Phys. Lett. 92 (2008)

    Google Scholar 

  77. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  Google Scholar 

  78. F.A. Chudnovskii, L.L. Odynets, A.L. Pergament, G.B. Stefanovich, J. Solid State Chem. 122, 95 (1996)

    Article  Google Scholar 

  79. A. Odagawa, Y. Katoh, Y. Kanzawa, Z. Wei, T. Mikawa, S. Muraoka, T. Takagi, Appl. Phys. Lett. 91, 133503 (2007)

    Article  Google Scholar 

  80. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Adv. Mater. 19, 2232 (2007)

    Article  Google Scholar 

  81. G. Dearnaley, D.V. Morgan, A.M. Stoneham, J. Non-Cryst. Solids 4, 593 (1970)

    Article  Google Scholar 

  82. K.C. Park, S. Basaviah, J. Non-Cryst. Solids 2, 284 (1970)

    Article  Google Scholar 

  83. I. Emmer, Thin Solid Films 20, 43 (1974)

    Article  Google Scholar 

  84. H. Schroeder, D.S. Jeong, Microelectron. Eng. 84, 1982 (2007)

    Article  Google Scholar 

  85. R.G. Sharpe, R.E. Palmer, J. Phys. Condens. Matter 8, 329 (1996)

    Article  Google Scholar 

  86. R. Blessing, H. Pagnia, N. Sotnik, Thin Solid Films 85, 119 (1981)

    Article  Google Scholar 

  87. A.E. Rakhshani, C.A. Hogarth, A.A. Abidi, J. Non-Cryst. Solids 20, 25 (1976)

    Article  Google Scholar 

  88. G.Z. Chen, D.J. Fray, T.W. Farthing, Nature 407, 361 (2000)

    Article  Google Scholar 

  89. M. Ruth, J.J. Yang, S. John Paul, M.-R. Gilberto, D. Regina, W. Rainer, Phys. Stat. Solidi. (RRL) Rapid Res. Lett. 4, 16 (2009)

    Google Scholar 

  90. C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath, Nano Lett. 4, 569 (2004)

    Article  Google Scholar 

  91. C.N. Lau, D.R. Stewart, M. Bockrath, R.S. Williams, Appl. Phys. A Mater. Sci. Process. 80, 1373 (2005)

    Article  Google Scholar 

  92. M. Feng, J.J. Yang, S. John Paul, S. Duncan, R.S. Williams, L. Chun Ning, Appl. Phys. Lett. 95, 113503 (2009)

    Article  Google Scholar 

  93. J. Borghetti, D.B. Strukov, M.D. Pickett, J.J. Yang, D.R. Stewart, R.S. Williams, J. Appl. Phys. 106 (2009)

    Google Scholar 

  94. J.J. Blackstock, C.L. Donley, W.F. Stickle, D.A.A. Ohlberg, J.J. Yang, D.R. Stewart, R.S. Williams, J. Am. Chem. Soc. 130, 4041 (2008)

    Article  Google Scholar 

  95. J.J. Yang, H. Xiang, C.X. Ji, W.F. Stickle, D.R. Stewart, D.A.A. Ohlberg, R.S. Williams, Y.A. Chang, Appl. Phys. Lett. 95 (2009)

    Google Scholar 

  96. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R. StanleyWilliams, Nanotechnology 20, 215209 (2009)

    Google Scholar 

  97. B.E.H.O. Kubawschewski, Oxidation of metals and alloys, 2nd edn. (Butterworths, London, 1962), p. 9

    Google Scholar 

  98. M. Aspelmeyer, U. Klemradt, W. Hartner, H. Bachhofer, G. Schindler, J. Phys. D Appl. Phys. 34, A173 (2001)

    Article  Google Scholar 

  99. C.H. Chen, D.X. Huang, W.G. Zhu, Y. Feng, X.G. Wu, Appl. Surf. Sci. 252, 7590 (2006)

    Article  Google Scholar 

  100. G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick, C. Mazure, Integr. Ferroelectr. 17, 421 (1997)

    Article  Google Scholar 

  101. N.A. Gjostein, Diffusion (American Society for Metals, Metals Park, OH, 1974), 241 p

    Google Scholar 

  102. A.M. Brown, M.F. Ashby, Acta Metall. 28, 1085 (1980)

    Article  Google Scholar 

  103. W. Gust, S. Mayer, A. Bogel, B. Predel, J. Phys. 46, 537 (1985)

    Google Scholar 

  104. J.C. Fisher, J. Appl. Phys. 21, 74 (1951)

    Article  Google Scholar 

  105. J.J. Yang, Y. Yang, K. Wu, Y.A. Chang, J. Appl. Phys. 98, 1 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank Julien Borghetti, Tan Ha, Cuong Le, Xuema Li, Zhiyong Li, Feng Miao, David Murphy, Janice Nickel, Douglas A. A. Ohlberg, Matthew D. Pickett, Duncan R. Stewart, John Paul Strachan, R. Stanley Williams, Qiangfei Xia, Wei Yi and Max Zhang for valuable discussions and excellent experimental assistance. This work was funded in part by the US Government’s Nano-Enabled Technology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joshua Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, J.J., Medeiros-Ribeiro, G. (2014). Oxide Based Memristive Nanodevices. In: Hong, S., Auciello, O., Wouters, D. (eds) Emerging Non-Volatile Memories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7537-9_6

Download citation

Publish with us

Policies and ethics