Advertisement

Data Envelopment Analysis

Basic Models with Input, Output, and Combined Orientation
  • Tarja Joro
  • Pekka J. Korhonen
Chapter
  • 964 Downloads
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 218)

Abstract

In this chapter we review the input- and output-oriented DEA models, and introduce the use of combined orientation.

References

  1. Ali AI (1989) Computational aspects of data envelopment analysis. CCS research report no. 640. University of Texas Center for Cybernetic Studies, AustinGoogle Scholar
  2. Ali AI (1994) Computational aspects of DEA. In: Charnes A, Cooper WW, Lewin AY, Seiford LM (eds) Data envelopment analysis: theory, methodology and applications. Kluwer Academic, Boston, pp 63–88CrossRefGoogle Scholar
  3. Ali AI, Seiford LM (1993) Computational accuracy and infinitesimals in data envelopment analysis. INFOR 31:290–297Google Scholar
  4. Arnold V, Bardhan I, Cooper WW, Gallegos A (1997) Primal and dual optimality in computer codes using two-stage solution procedures in DEA. In: Aronson J, Zionts S (eds) Operations research: models, methods and applications. Quorum Books, Westport, pp 57–96, A volume in honor of G.L. ThompsonGoogle Scholar
  5. Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092CrossRefGoogle Scholar
  6. Briec W (1997) A graph-type extension of Farrell technical efficiency measure. J Prod Anal 8:95–110CrossRefGoogle Scholar
  7. Chambers R, Chung Y, Färe R (1996) Benefit and distance functions. J Econ Theory 70:407–419CrossRefGoogle Scholar
  8. Chambers RG, Chung Y, Färe R (1998) Profit, directional distance functions, and Nerlovian efficiency. J Optim Theory Appl 98(2):351–364CrossRefGoogle Scholar
  9. Charnes A, Cooper WW, Rhodes E (1978) Measuring efficiency of decision making units. Eur J Oper Res 2:429–444CrossRefGoogle Scholar
  10. Charnes A, Cooper WW, Rhodes E (1979) Short communication: measuring efficiency of decision making units. Eur J Oper Res 3:339CrossRefGoogle Scholar
  11. Charnes A, Cooper WW, Golany B, Seiford LM, Stutz J (1985) Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J Econom 30(1/2):91–107CrossRefGoogle Scholar
  12. Charnes A, Rousseau JJ, Semple JH (1992) Non-Archimedean infinitesimals, transcendentals and categorical inputs in linear programming and data envelopment analysis. Int J Syst Sci 23:2401–2406CrossRefGoogle Scholar
  13. Charnes A, Cooper WW, Lewin AY, Seiford LM (1994) Data envelopment analysis: theory, methodology and applications. Kluwer Academic, BostonCrossRefGoogle Scholar
  14. Chung YH, Färe R, Grosskopf S (1997) Productivity and undesirable outputs: a directional distance function approach. J Environ Manage 51(3):229–240CrossRefGoogle Scholar
  15. Färe R, Grosskopf S (1997) Profit efficiency, Farrell decompositions and the Mahler inequality. Econ Lett 1997:283–287CrossRefGoogle Scholar
  16. Joro T, Korhonen P, Wallenius J (1998) Structural comparison of data envelopment analysis and multiple objective linear programming. Manag Sci 44(7):962–970CrossRefGoogle Scholar
  17. Korhonen P, Luptacik M (2004) Eco-efficiency analysis of power plants: an extension of data envelopment analysis. Eur J Oper Res 154(2):437–446CrossRefGoogle Scholar
  18. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic, New YorkGoogle Scholar
  19. Steuer RE (1986) Multiple criteria optimization: theory, computation and application. Wiley, New YorkGoogle Scholar
  20. Thanassoulis E (1992) Warwick DEA user manual. Warwick Business School, CoventryGoogle Scholar
  21. Thanassoulis E, Dyson RG (1992) Estimating preferred target input-output levels using data envelopment analysis. Eur J Oper Res 56:80–97CrossRefGoogle Scholar
  22. Thrall RM (1996) Duality, classification and slacks in DEA. Ann Oper Res 66:109–138CrossRefGoogle Scholar
  23. Zhu J (1996) Data envelopment analysis with preference structure. J Oper Res Soc 47:136–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tarja Joro
    • 1
  • Pekka J. Korhonen
    • 2
  1. 1.Department of Accounting, Operations and Information Systems Alberta School of BusinessUniversity of AlbertaEdmontonCanada
  2. 2.Department of Information and Service Economy School of BusinessAalto UniversityHelsinkiFinland

Personalised recommendations