Skip to main content

Principles of Nerve Repair and Neural Recovery in Extremity Replantation Surgery

  • Chapter
  • First Online:

Abstract

Success of nerve repair is dependent on the state of the lacerated nerve segments, the timing and technique of repair, and the location of the injury with respect to the target muscle end plates. When nerve segments of appropriate lengths are unavailable, the use of nerve grafts and synthetic or natural conduits is necessary. This chapter discusses the biology of axonal regeneration following injury; the techniques of direct nerve repair; the use of autografts, allografts, and synthetic conduits; and the measurement of functional outcomes following repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45:116–22.

    Article  CAS  PubMed  Google Scholar 

  2. Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006;34:785–8.

    Article  PubMed  Google Scholar 

  3. Maricevic A, Erceg M. War injuries to the extremities. Mil Med. 1997;162:808–11.

    CAS  PubMed  Google Scholar 

  4. Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119:1951–65.

    Article  PubMed  Google Scholar 

  5. Nicholson B, Verma S. Comorbidities in chronic neuropathic pain. Pain Med. 2004;5 Suppl 1:S9–27.

    Article  PubMed  Google Scholar 

  6. Taylor RS. Epidemiology of refractory neuropathic pain. Pain Pract. 2006;6:22–6.

    Article  PubMed  Google Scholar 

  7. Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000;8:243–52.

    CAS  PubMed  Google Scholar 

  8. Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve. 1990;13:771–84.

    Article  CAS  PubMed  Google Scholar 

  9. Koeppen AH. Wallerian degeneration: history and clinical significance. J Neurol Sci. 2004;220:115–7.

    Article  PubMed  Google Scholar 

  10. Stoll G, Muller HW. Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol. 1999;9:313–25.

    Article  CAS  PubMed  Google Scholar 

  11. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004;16:E1.

    Article  PubMed  Google Scholar 

  12. Matsuyama T, Mackay M, Midha R. Peripheral nerve repair and grafting techniques: a review. Neurol Med Chir. 2000;40:187–99.

    Article  CAS  Google Scholar 

  13. de Ruiter GC, Spinner RJ, Verhaagen J, Malessy MJ. Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg. 2014;120(2):493–501.

    Article  PubMed  Google Scholar 

  14. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Deumens R, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92:245–76.

    Article  PubMed  Google Scholar 

  16. Lunn ER, Brown MC, Perry VH. The pattern of axonal degeneration in the peripheral nervous system varies with different types of lesion. Neuroscience. 1990;35:157–65.

    Article  CAS  PubMed  Google Scholar 

  17. Wang MS, et al. Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain J Neurol. 2004;127:671–9.

    Article  Google Scholar 

  18. Touma E, Kato S, Fukui K, Koike T. Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur J Neurosci. 2007;26:3368–81.

    Article  PubMed  Google Scholar 

  19. Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol. 2010;223:51–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zanazzi G, et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J Cell Biol. 2001;152:1289–99.

    Google Scholar 

  21. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67–116.

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe K, Bonilla I, Winkles JA, Strittmatter SM. Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci. 2003;23:9675–86.

    CAS  PubMed  Google Scholar 

  23. Millesi H, Meissl G, Berger A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am. 1972;54:727–50.

    CAS  PubMed  Google Scholar 

  24. Ornelas L, et al. Fibrin glue: an alternative technique for nerve coaptation–part I. Wave amplitude, conduction velocity, and plantar-length factors. J Reconstr Microsurg. 2006;22:119–22.

    Article  PubMed  Google Scholar 

  25. Dvali L, Mackinnon S. Nerve repair, grafting, and nerve transfers. Clin Plast Surg. 2003;30:203–21.

    Article  PubMed  Google Scholar 

  26. Siemionow M, Brzezicki G. Chapter 8: current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009;87:141–72.

    Article  CAS  PubMed  Google Scholar 

  27. Ornelas L, et al. Fibrin glue: an alternative technique for nerve coaptation–part II. Nerve regeneration and histomorphometric assessment. J Reconstr Microsurg. 2006;22:123–8.

    Article  PubMed  Google Scholar 

  28. Bontioti E, Dahlin LB. Chapter 12: mechanisms underlying the end-to-side nerve regeneration. Int Rev Neurobiol. 2009;87:251–68.

    Article  PubMed  Google Scholar 

  29. Kettle SJ, Starritt NE, Glasby MA, Hems TE. End-to-side nerve repair in a large animal model: how does it compare with conventional methods of nerve repair? J Hand Surg Eur Vol. 2013;38:192–202.

    Article  CAS  PubMed  Google Scholar 

  30. Trumble TE, Shon FG. The physiology of nerve transplantation. Hand Clin. 2000;16:105–22.

    CAS  PubMed  Google Scholar 

  31. Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery. 2010;30:574–88.

    Article  PubMed  Google Scholar 

  32. Tang J, Wang XM, Hu J, Luo E, Qi MC. Autogenous standard versus inside-out vein graft to repair facial nerve in rabbits. Chin J Traumatol. 2008;11:104–9.

    PubMed  Google Scholar 

  33. Brandt J, Dahlin LB, Kanje M, Lundborg G. Spatiotemporal progress of nerve regeneration in a tendon autograft used for bridging a peripheral nerve defect. Exp Neurol. 1999;160:386–93.

    Article  CAS  PubMed  Google Scholar 

  34. Dahlin LB, Anagnostaki L, Lundborg G. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg/Nordisk plastikkirurgisk forening [and] Nordisk klubb for handkirurgi. 2001;35:29–34.

    Article  CAS  Google Scholar 

  35. Khaing ZZ, Schmidt CE. Advances in natural biomaterials for nerve tissue repair. Neurosci Lett. 2012;519:103–14.

    Article  CAS  PubMed  Google Scholar 

  36. Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795:44–54.

    Article  CAS  PubMed  Google Scholar 

  37. Dubovy P, et al. Laminin molecules in freeze-treated nerve segments are associated with migrating Schwann cells that display the corresponding alpha6beta1 integrin receptor. Glia. 2001;33:36–44.

    Article  CAS  PubMed  Google Scholar 

  38. Evans PJ, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21:1507–22.

    Article  CAS  PubMed  Google Scholar 

  39. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43:553–72.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshii S, Oka M, Shima M, Taniguchi A, Akagi M. Bridging a 30-mm nerve defect using collagen filaments. J Biomed Mater Res A. 2003;67:467–74.

    Article  PubMed  Google Scholar 

  41. Wang Y, et al. The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through beta1 integrin/MAPK signaling pathway. Biomaterials. 2011;32:6737–44.

    Article  CAS  PubMed  Google Scholar 

  42. Bozkurt A, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13:2971–9.

    Article  CAS  PubMed  Google Scholar 

  43. Novak U, Kaye AH. Extracellular matrix and the brain: components and function. J Clin Neurosci. 2000;7:280–90.

    Article  CAS  PubMed  Google Scholar 

  44. Pfister LA, Papaloizos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst. 2007;12:65–82.

    Article  CAS  PubMed  Google Scholar 

  45. Chen YS, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials. 2000;21:1541–7.

    Article  CAS  PubMed  Google Scholar 

  46. Xu X, et al. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials. 2003;24:2405–12.

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, et al. Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J Biomed Mater Res A. 2003;66:522–31.

    Article  PubMed  Google Scholar 

  48. Hoke A, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci. 2006;26:9646–55.

    Article  CAS  PubMed  Google Scholar 

  49. Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G. Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia. 2001;34:8–17.

    Article  CAS  PubMed  Google Scholar 

  50. Bryan DJ, et al. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration. Tissue Eng. 2000;6:129–38.

    Article  CAS  PubMed  Google Scholar 

  51. Hermann A, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. 2004;117:4411–22.

    Article  CAS  PubMed  Google Scholar 

  52. Amoh Y, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005;102:17734–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Brooks DN, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery. 2012;32:1–14.

    Article  PubMed  Google Scholar 

  54. Evans PJ, et al. Regeneration across cold preserved peripheral nerve allografts. Microsurgery. 1999;19:115–27.

    Article  CAS  PubMed  Google Scholar 

  55. Jensen JN, Brenner MJ, Tung TH, Hunter DA, Mackinnon SE. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine. Ann Plast Surg. 2005;54:420–7.

    Article  CAS  PubMed  Google Scholar 

  56. Galanakos SP, Zoubos AB, Johnson EO, Kanellopoulos AD, Soucacos PN. Outcome models in peripheral nerve repair: time for a reappraisal or for a novel? Microsurgery. 2012;32:326–33.

    Article  PubMed  Google Scholar 

  57. Ruijs AC, Jaquet JB, Kalmijn S, Giele H, Hovius SE. Median and ulnar nerve injuries: a meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair. Plast Reconstr Surg. 2005;116:484–94; discussion 495–86.

    Article  CAS  PubMed  Google Scholar 

  58. Kim DH, Han K, Tiel RL, Murovic JA, Kline DG. Surgical outcomes of 654 ulnar nerve lesions. J Neurosurg. 2003;98:993–1004.

    Article  PubMed  Google Scholar 

  59. Roganovic Z, Pavlicevic G. Difference in recovery potential of peripheral nerves after graft repairs. Neurosurgery. 2006;59:621–33; discussion 621–33.

    Article  PubMed  Google Scholar 

  60. Kim DH, Ryu S, Tiel RL, Kline DG. Surgical management and results of 135 tibial nerve lesions at the Louisiana State University Health Sciences Center. Neurosurgery. 2003;53:1114–24; discussion 1124–15.

    Article  PubMed  Google Scholar 

  61. Maricevich M, Carlsen B, Mardini S, Moran S. Upper extremity and digital replantation. Hand (N Y). 2011;6:356–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel O. Poore MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapur, S., Poore, S.O. (2015). Principles of Nerve Repair and Neural Recovery in Extremity Replantation Surgery. In: Salyapongse, A., Poore, S., Afifi, A., Bentz, M. (eds) Extremity Replantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7516-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7516-4_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7515-7

  • Online ISBN: 978-1-4899-7516-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics