Immunological Detection and Characterization

Chapter

Abstract

Immunological methods have been used for viral diagnosis for more than 100 years. Although molecular methods are replacing many older methods of viral diagnosis, there is still a significant role for immunological methods to guide patient care and in the performance of epidemiologic studies. Identification of viral antigens in clinical samples can be accomplished rapidly through the use of point-of-care lateral immunoassays or through the use of more traditional immunofluorescence and enzyme immunoassays in the virology laboratory. Serological assays are also a valuable tool for the clinician and epidemiologist. Many of the available diagnostic assays have enzyme immunoassay formats, but functional assays such as hemagglutination-inhibition and neutralizing antibody tests are also available. In some instances, virus infection can be diagnosed with a single serum sample (e.g., HIV and hepatitis C virus infections) while in other instances paired sera are needed (e.g., those caused by common respiratory viruses). Point-of-care antibody assays are also available for testing blood and saliva samples for some viruses. An understanding of the principles of immunological detection methods is important in the application and interpretation of test results.

Keywords

Hepatitis Influenza Meningitis Dextran Biotin 

References

  1. 1.
    Sternberg GM. Practical results of bacteriological researches. Trans Assoc Am Phys. 1892;7:68–86.Google Scholar
  2. 2.
    Hisrt GK. The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science. 1941;94:22–3.CrossRefGoogle Scholar
  3. 3.
    Coons AH, Snyder JC, Cheever FS, Murray ES. Localization of antigen in cells. IV. Antigens of Rickettsiae and mumps virus. J Exp Med. 1950;91:31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Yalow RS, Berson SA. Assay of plasma insulin in human subjects by immunological methods. Nature. 1959;184 Suppl 21:1648–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Hollinger FB, Vorndam V, Dreesman GR. Assay of Australia antigen and antibody employing double-antibody and solid-phase radioimmunoassay techniques and comparison with the passive hemagglutination methods. J Immunol. 1971;107:1099–111.PubMedGoogle Scholar
  6. 6.
    O’Beirne AJ, Sever JL. Enzyme immunoassay. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 153–88.Google Scholar
  7. 7.
    Yolken RH, Viscidi R. Enzyme immunoassay and radioimmunoassay. In: Schmidt NJ, Emmons RW, editors. Diagnostic procedures for viral, rickettsial and chlamydial infections. 6th ed. Washington, D.C: American Public Health Association; 1989. p. 157–78.Google Scholar
  8. 8.
    Forghani B. Diagnosis by viral antigen detection. In: Jerome KR, editor. Lennette’s laboratory diagnosis of viral infection. 4th ed. New York: Informa Healthcare; 2010. p. 113–32.CrossRefGoogle Scholar
  9. 9.
    Atmar RL, Lindstrom SE. Influenza viruses. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington,D.C: ASM Press; 2011. p. 1333–46.Google Scholar
  10. 10.
    Hertz MI, Englund JA, Snover D, Bitterman PB, McGlave PB. Respiratory syncytial virus-induced acute lung injury in adult patients with bone marrow transplants: a clinical approach and review of the literature. Medicine (Baltimore). 1989;68:269–81.CrossRefGoogle Scholar
  11. 11.
    Stockman LJ, Staat MA, Holloway M, et al. Optimum diagnostic assay and clinical specimen for routine rotavirus surveillance. J Clin Microbiol. 2008;46:1842–3.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Corey L, Adams HG, Brown ZA, Holmes KK. Genital herpes simplex virus infections: clinical manifestations, course, and complications. Ann Intern Med. 1983;98:958–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Grandien M. Viral diagnosis by antigen detection techniques. Clin Diagn Virol. 1996;5:81–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Thomas EE, Roscoe DL, Book L, Bone B, Browne L, Mah V. The utility of latex agglutination assays in the diagnosis of pediatric viral gastroenteritis. Am J Clin Pathol. 1994;101:742–6.PubMedGoogle Scholar
  15. 15.
    Wilhemi I, Colomina J, Martin-Rodrigo D, Roman E, Sanchez-Fauquier A. New immunochromatographic method for rapid detection of rotaviruses in stool samples compared with standard enzyme immunoassay and latex agglutination techniques. Eur J Clin Microbiol Infect Dis. 2001;20:741–3.CrossRefGoogle Scholar
  16. 16.
    Liu C. Rapid diagnosis of human influenza infection from nasal smears by means of fluorescein-labeled antibody. Proc Soc Exp Biol Med. 1956;92:883–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Emanuel D, Peppard J, Stover D, Gold J, Armstrong D, Hammerling U. Rapid immunodiagnosis of cytomegalovirus pneumonia by bronchoalveolar lavage using human and murine monoclonal antibodies. Ann Intern Med. 1986;104:476–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Espy MJ, Hierholzer JC, Smith TF. The effect of centrifugation on the rapid detection of adenovirus in shell vials. Am J Clin Pathol. 1987;88:358–60.PubMedGoogle Scholar
  19. 19.
    Espy MJ, Smith TF, Harmon MW, Kendal AP. Rapid detection of influenza virus by shell vial assay with monoclonal antibodies. J Clin Microbiol. 1986;24:677–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Minnich LL, Ray CG. Immunofluorescence. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 117–28.Google Scholar
  21. 21.
    Halstead DC, Todd S, Fritch G. Evaluation of five methods for respiratory syncytial virus detection. J Clin Microbiol. 1990;28:1021–5.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim HW, Wyatt RG, Fernie BF, et al. Respiratory syncytial virus detection by immunofluorescence in nasal secretions with monoclonal antibodies against selected surface and internal proteins. J Clin Microbiol. 1983;18:1399–404.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bakerman P, Balasuriya L, Fried O, Tellez D, Garcia-Filion P, Dalton H. Direct fluorescent-antibody testing followed by culture for diagnosis of 2009 H1N1 influenza A. J Clin Microbiol. 2011;49:3673–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dominguez EA, Taber LH, Couch RB. Comparison of rapid diagnostic techniques for respiratory syncytial and influenza A virus respiratory infections in young children. J Clin Microbiol. 1993;31:2286–90.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sung RY, Chan PK, Choi KC, et al. Comparative study of nasopharyngeal aspirate and nasal swab specimens for diagnosis of acute viral respiratory infection. J Clin Microbiol. 2008;46:3073–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gleaves CA, Meyers JD. Comparison of MRC-5 and HFF cells for the identification of cytomegalovirus in centrifugation culture. Diagn Microbiol Infect Dis. 1987;6:179–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith TF. Rapid methods for the diagnosis of viral infections. Lab Med. 1987;18:16–20.Google Scholar
  28. 28.
    Coons AH, Creech HJ, Jones RN, Berliner E. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol. 1942;45:159–70.Google Scholar
  29. 29.
    Gerna G, Sarasini A, Percivalle E, Zavattoni M, Baldanti F, Revello MG. Rapid screening for resistance to ganciclovir and foscarnet of primary isolates of human cytomegalovirus from culture-positive blood samples. J Clin Microbiol. 1995;33:738–41.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hughes JH. Physical and chemical methods for enhancing rapid detection of viruses and other agents. Clin Microbiol Rev. 1993;6:150–75.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gay H, Clark WR, Docherty JJ. Detection of herpes simplex virus infection using glucose oxidase-antiglucose oxidase immunoenzymatic stain. J Histochem Cytochem. 1984;32:447–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Sternberger LA, Hardy Jr PH, Cuculis JJ, Meyer HC. The unlabeled antibody enzyme method of immunochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1969;18:315–33.CrossRefGoogle Scholar
  33. 33.
    Clark CA, Downs EC, Primus FJ. An unlabeled antibody method using glucose oxidase-antiglucose oxidase complexes (GAG): a sensitive alternative to immunoperoxidase for the detection of tissue antigens. J Histochem Cytochem. 1982;30:27–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Cordell JL, Falini B, Erber WN, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem. 1984;32:219–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Buchwalow IB. Immunostaining enhancement. In: Buchwalow IB, Bocker W, editors. Immunohistochemistry: basics and methods. Berlin: Springer; 2010. p. 47–59.CrossRefGoogle Scholar
  36. 36.
    Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mushahwar IK, Brawner TA. Radioimmunoassay. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 129–51.Google Scholar
  38. 38.
    Aldous WK, Gerber K, Taggart EW, Rupp J, Wintch J, Daly JA. A comparison of Thermo Electron RSV OIA to viral culture and direct fluorescent assay testing for respiratory syncytial virus. J Clin Virol. 2005;32:224–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Boivin G, Hardy I, Kress A. Evaluation of a rapid optical immunoassay for influenza viruses (FLU OIA test) in comparison with cell culture and reverse transcription-PCR. J Clin Microbiol. 2001;39:730–2.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cazacu AC, Greer J, Taherivand M, Demmler GJ. Comparison of lateral-flow immunoassay and enzyme immunoassay with viral culture for rapid detection of influenza virus in nasal wash specimens from children. J Clin Microbiol. 2003;41:2132–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hang VT, Nguyet NM, Trung DT, et al. Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. PLoS Negl Trop Dis. 2009;3:e360.PubMedCrossRefGoogle Scholar
  42. 42.
    Slinger R, Milk R, Gaboury I, Diaz-Mitoma F. Evaluation of the QuickLab RSV test, a new rapid lateral-flow immunoassay for detection of respiratory syncytial virus antigen. J Clin Microbiol. 2004;42:3731–3.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sobanski MA, Stephens J, Biagini GA, Coakley WT. Detection of adenovirus and rotavirus antigens by an immuno-gold lateral flow test and ultrasound-enhanced latex agglutination assay. J Med Microbiol. 2001;50:203.PubMedGoogle Scholar
  44. 44.
    Siitari H, Hemmila I, Soini E, Lovgren T, Koistinen V. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature. 1983;301:258–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Halonen P, Meurman O, Lovgren T, Hemmila I, Soini E. Detection of viral antigens by time-resolved fluoroimmunoassay. Curr Top Microbiol Immunol. 1983;104:133–46.PubMedGoogle Scholar
  46. 46.
    Ballew HC. Neutralization. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 229–41.Google Scholar
  47. 47.
    Lim KA, Benyesh-Melnick M. Typing of viruses by combinations of antiserum pools. Application to typing of enteroviruses (Coxsackie and echo). J Immunol. 1959;84:309–17.Google Scholar
  48. 48.
    Melnick JL, Rennick V, Hampil B, Schmidt NJ, Ho HH. Lyophilized combination pools of enterovirus equine antisera: preparation and test procedures for the identification of field strains of 42 enteroviruses. Bull World Health Organ. 1973;48:263–8.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Melnick JL, Wenner HA, Phillips CA. Enteroviruses. In: Lennette EH, Schmidt NJ, editors. Diagnostic procedures for viral, rickettsial and chlamydial infections. 5th ed. Washington, D.C: American Public Health Association; 1979. p. 471–534.Google Scholar
  50. 50.
    Hierholzer JC. Further subgrouping of the human adenoviruses by differential hemagglutination. J Infect Dis. 1973;128:541–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Webster R, Cox N, Stohr K. WHO manual on animal influenza diagnosis and surveillance. Geneva: World Health Organization; 2004. Ref Type: Pamphlet.Google Scholar
  52. 52.
    Feinstone SM, Barker LF, Purcell RH. Hepatitis A and B. In: Lennette EH, Schmidt NJ, editors. Diagnostic procedures for viral, rickettsial and chlamydial infections. 5th ed. Washington, D.C: American Public Health Association; 1979. p. 879–925.Google Scholar
  53. 53.
    Nakano JH. Poxviruses. In: Lennette EH, Schmidt NJ, editors. Diagnostic procedures for viral, rickettsial and chlamydial infections. 5th ed. Washington, D.C: American Public Health Association; 1979. p. 257–308.Google Scholar
  54. 54.
    Casals J, Buckley SM, Cedeno R. Antigenic properties of the arenaviruses. Bull World Health Organ. 1975;52:421–7.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lindesmith LC, Costantini V, Swanstrom J et al. Emergence of norovirus GII.4 strains correlates with changes in evolving blockade epitopes. J Virol. 2013;87:2803–13.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yewdell JW, Gerhard W. Antigenic characterization of viruses by monoclonal antibodies. Annu Rev Microbiol. 1981;35:185–206.PubMedCrossRefGoogle Scholar
  57. 57.
    Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB. The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A. 1988;85:645–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Taniguchi K, Hoshino Y, Nishikawa K, et al. Cross-reactive and serotype-specific neutralization epitopes on VP7 of human rotavirus: nucleotide sequence analysis of antigenic mutants selected with monoclonal antibodies. J Virol. 1988;62:1870–4.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Stone MR, Nowinski RC. Topological mapping of murine leukemia virus proteins by competition-binding assays with monoclonal antibodies. Virology. 1980;100:370–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Schmidt NJ. Cell culture procedures for diagnostic virology. In: Schmidt NJ, Emmons RW, editors. Diagnostic procedures for viral, rickettsial, and chlamydial infections. 6th ed. Washington, D.C: American Public Health Association; 1989. p. 51–100.Google Scholar
  61. 61.
    Filipovich AH, Peltier MH, Bechtel MK, Dirksen CL, Strauss SA, Englund JA. Circulating cytomegalovirus (CMV) neutralizing activity in bone marrow transplant recipients: comparison of passive immunity in a randomized study of four intravenous IgG products administered to CMV-seronegative patients. Blood. 1992;80:2656–60.PubMedGoogle Scholar
  62. 62.
    Siber GR, Leszcynski J, Pena-Cruz V, et al. Protective activity of a human respiratory syncytial virus immune globulin prepared from donors screened by microneutralization assay. J Infect Dis. 1992;165:456–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Stark LM, Lewis AL. Complement fixation test. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 203–8.Google Scholar
  64. 64.
    Wasserman A. Ueber die serodiagnostik der syphilis und ihne praktische bedeutung fur die medizin. Verh Kong Inn Med (Wiesbaden). 1908;25:181–91.Google Scholar
  65. 65.
    James K. Immunoserology of infectious diseases. Clin Microbiol Rev. 1990;3:132–52.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gold E, Godek G. Complement fixation studies with a varicella-zoster antigen. J Immunol. 1965;95:692–5.PubMedGoogle Scholar
  67. 67.
    Matson DO, Byington C, Canfield M, Albrecht P, Feigin RD. Investigation of a measles outbreak in a fully vaccinated school population including serum studies before and after revaccination. Pediatr Infect Dis J. 1993;12:292–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Czako R, Atmar RL, Opekun AR, Gilger MA, Graham DY, Estes MK. Serum hemagglutination inhibition activity correlates with protection from gastroenteritis in persons infected with Norwalk virus. Clin Vaccine Immunol. 2012;19:284–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    McLaren LC. Hemagglutination inhibition and hemadsorption. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 243–9.Google Scholar
  70. 70.
    Lennette ET, Lennette DA. Immune adherence hemagglutination. In: Specter S, Lancz G, editors. Clinical virology manual. New York: Elsevier; 1992. p. 251–61.Google Scholar
  71. 71.
    Hodinka RL. Serologic tests in clinical virology. In: Jerome KR, editor. Lennette’s laboratory diagnosis of viral infection. New York: Informa Healthcare; 2010. p. 133–50.CrossRefGoogle Scholar
  72. 72.
    Shivkumar S, Peeling R, Jafari Y, Joseph L, Pant PN. Accuracy of rapid and point-of-care screening tests for hepatitis C: a systematic review and meta-analysis. Ann Intern Med. 2012;157:558–66.PubMedCrossRefGoogle Scholar
  73. 73.
    Delaney KP, Branson BM, Uniyal A, et al. Performance of an oral fluid rapid HIV-1/2 test: experience from four CDC studies. AIDS. 2006;20:1655–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Laderman EI, Whitworth E, Dumaual E, et al. Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clin Vaccine Immunol. 2008;15:159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yap G, Pok KY, Lai YL, et al. Evaluation of Chikungunya diagnostic assays: differences in sensitivity of serology assays in two independent outbreaks. PLoS Negl Trop Dis. 2010;4:e753.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Burke DS, Nisalak A, Gentry MK. Detection of flavivirus antibodies in human serum by epitope-blocking immunoassay. J Med Virol. 1987;23:165–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Green KY, Taniguchi K, Mackow ER, Kapikian AZ. Homotypic and heterotypic epitope-specific antibody responses in adult and infant rotavirus vaccines: implications for vaccine development. J Infect Dis. 1990;161:667–79.PubMedCrossRefGoogle Scholar
  78. 78.
    Hawkes RA, Roehrig JT, Boughton CR, Naim HM, Orwell R, Anderson-Stuart P. Defined epitope blocking with Murray Valley encephalitis virus and monoclonal antibodies: laboratory and field studies. J Med Virol. 1990;32:31–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Matson DO, O’Ryan ML, Pickering LK, et al. Characterization of serum antibody responses to natural rotavirus infections in children by VP7-specific epitope-blocking assays. J Clin Microbiol. 1992;30:1056–61.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Shaw RD, Fong KJ, Losonsky GA, et al. Epitope-specific immune responses to rotavirus vaccination. Gastroenterology. 1987;93:941–50.PubMedGoogle Scholar
  81. 81.
    Wang ML, Skehel JJ, Wiley DC. Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. J Virol. 1986;57:124–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Slade HB, Pica RV, Pahwa SG. Detection of HIV-specific antibodies in infancy by isoelectric focusing and affinity immunoblotting. J Infect Dis. 1989;160:126–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Huhtinen P, Kivela M, Kuronen O, et al. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Anal Chem. 2005;77:2643–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kavanagh O, Estes MK, Reeck A, et al. Serological responses to experimental Norwalk virus infection measured using a quantitative duplex time-resolved fluorescence immunoassay. Clin Vaccine Immunol. 2011;18:1187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Williams V, Gershon A, Brunell PA. Serologic response to varicella-zoster membrane antigens measured by direct immunofluorescence. J Infect Dis. 1974;130:669–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Tsang VC, Peralta JM, Simons AR. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol. 1983;92:377–91.PubMedCrossRefGoogle Scholar
  87. 87.
    Wolinsky SM, Rinaldo CR, Kwok S, et al. Human immunodeficiency virus type 1 (HIV-1) infection a median of 18 months before a diagnostic western blot. Evidence from a cohort of homosexual men. Ann Intern Med. 1989;111:961–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Forman MS, Valsamakis A. Hepatitis C virus. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington, D.C: ASM Press; 2011. p. 1437–55.Google Scholar
  89. 89.
    Bernstein DI, Garratty E, Lovett MA, Bryson YJ. Comparison of Western Blot Analysis to microneutralization for the detection of type-specific herpes simplex virus antibodies. J Med Virol. 1985;15:223–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departments of Medicine and Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUSA

Personalised recommendations