Skip to main content

Growth Mechanism, Energetics and CO Affinities of Vanadium Doped Gold Clusters, AunV with n = 1−20

  • Chapter
  • First Online:
  • 1095 Accesses

Abstract

We report a comprehensive review on the geometric, electronic and energetic properties and the CO adsorption on bimetallic clusters Au n V in the range of n = 1−20, obtained using density functional theory computations (BB95 and B3LYP functionals in conjunction with the pseudo-potential cc-pVDZ-PP basis set for metals and the full-electron cc-pVTZ basis set for non-metals). The effects of the vanadium dopant on the properties of gold clusters are analyzed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haruta M (1997) Catal Today 36:153

    CAS  Google Scholar 

  2. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    CAS  Google Scholar 

  3. Sanchez A, Abbet S, Heiz U, Schneider WD, Haekkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573

    CAS  Google Scholar 

  4. Wallace WT, Whetten RL (2000) J Phys Chem B 104:10964

    CAS  Google Scholar 

  5. Schwerdtfeger P (2003) Angew Chem Int Ed 42:1892

    CAS  Google Scholar 

  6. Riboh JC, Haes AJ, McFarland AD, Ranjit C, Van Duyne RP (2003) J Phys Chem B 107:1772

    CAS  Google Scholar 

  7. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319

    CAS  Google Scholar 

  8. Ho J, Ervin KM, Lineberger WC (1990) J Chem Phys 93:6987

    CAS  Google Scholar 

  9. Handschuh H, Ganteför G, Bechthold PS, Eberhardt W (1994) J Chem Phys 100:7093

    CAS  Google Scholar 

  10. Hansen K, Herlert A, Schweikhard L, Vogel M (2000) Phys Rev A73:063202

    Google Scholar 

  11. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674

    CAS  Google Scholar 

  12. Pyykkö P (2004) Angew Chem Int Ed 43:4412

    Google Scholar 

  13. Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 13:064306

    Google Scholar 

  14. Majumder C (2007) Phys Rev B 75:235409

    Google Scholar 

  15. Majumder C, Kandalam AK, Jena P (2006) Phys Rev B 74:205437

    Google Scholar 

  16. Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174

    Google Scholar 

  17. Autschbach J, Hess BA, Johansson MP, Neugebauer J, Patzschke M, Pyykkö P, Reiher M, Sundholm D (2004) Phys Chem Chem Phys 6:11

    CAS  Google Scholar 

  18. Nhat PV, Nguyen MT (2011) Phys Chem Chem Phys 13:16254

    CAS  Google Scholar 

  19. Häkkinen H (2008) Chem Soc Rev 37:1847

    Google Scholar 

  20. Zhai HJ, Li J, Wang LS (2004) J Chem Phys 121:8369

    CAS  Google Scholar 

  21. Li X, Kiran B, Li J, Zhai HJ, Wang LS (2002) Angew Chem Int Ed 41:4786

    CAS  Google Scholar 

  22. Gao Y, Bulusu S, Zeng XC (2005) J Am Chem Soc 127:15680

    CAS  Google Scholar 

  23. Wang LM, Bulusu S, Zhai HJ, Zeng XC, Wang LS (2007) Angew Chem Int Ed 46:2915

    CAS  Google Scholar 

  24. Wang LM, Bai J, Lechtken A, Huang W, Schooss D, Kappes MM, Zeng XC, Wang LS (2009) Phys Rev B 79:033413

    Google Scholar 

  25. Wang LM, Pal R, Huang W, Zeng XC, Wang LS (2009) J Chem Phys 130:051101

    Google Scholar 

  26. Lin L, Claes P, Gruene P, Meijer G, Fielicke A, Nguyen MT, Lievens P (2010) ChemPhysChem 11:1932

    CAS  Google Scholar 

  27. Haruta M (2003) Chem Rec 3:75

    CAS  Google Scholar 

  28. Hagen J, Socaciu LD, Heiz U, Bernhardt TM, Wöste L (2003) Eur Phys J D 24:327

    CAS  Google Scholar 

  29. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) J Chem Phys 117:4010

    CAS  Google Scholar 

  30. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437

    CAS  Google Scholar 

  31. Phala NS, Klatt G, van Steen E (2004) Chem Phys Lett 395:33

    CAS  Google Scholar 

  32. Yuan DW, Zeng Z (2004) J Chem Phys 120:6574

    CAS  Google Scholar 

  33. Fernández EM, Ordejón P, Balbás LC (2005) Chem Phys Lett 408:252

    Google Scholar 

  34. Wang YL, Zhai HJ, Xu L, Li J, Wang LS (2010) J Phys Chem A 114:1247

    CAS  Google Scholar 

  35. Davran-Candan T, Günay ME, Yildirim R (2010) J Chem Phys 132:174113

    Google Scholar 

  36. Blyholder G (1964) J Phys Chem B68:2772

    Google Scholar 

  37. Zhao Y, Li Z, Yang J (2009) Phys Chem Chem Phys 11:2329

    CAS  Google Scholar 

  38. Bernhardt TM, Socaciu-Siebert LD, Hagen J, Wöste L (2005) Appl Catal A 291:170

    CAS  Google Scholar 

  39. Bernhardt TM, Hagen J, Lang SM, Popolan DM, Socaciu-Siebert LD, Wöste L (2009) J Phys Chem A 113:2724

    CAS  Google Scholar 

  40. Neumaier M, Weigend F, Hampe O, Kappes MM (2006) J Chem Phys 125:104308

    Google Scholar 

  41. Neumaier M, Weigend F, Hampe O, Kappes MM (2008) Faraday Discuss 138:393

    CAS  Google Scholar 

  42. Popolan DM, Nössler M, Mitric R, Bernhardt TM, Koutecky VB (2011) J Phys Chem A 115:951

    CAS  Google Scholar 

  43. Joshi AM, Tucker MH, Delgass WN, Thomson KT (2006) J Chem Phys 125:194707

    Google Scholar 

  44. Sadek MM, Wang L (2006) J Phys Chem A 110:14036

    CAS  Google Scholar 

  45. Song C, Ge Q, Wang L (2005) J Phys Chem B 109:22341

    CAS  Google Scholar 

  46. Graciani J, Oviedo J, Sanz JF (2006) J Phys Chem B 110:11600

    CAS  Google Scholar 

  47. Fu Y, Li J, Wang SG (2010) J Mol Model 16:9

    CAS  Google Scholar 

  48. Johansson MP, Pyykkö P (2010) Chem Commun 46:3762

    CAS  Google Scholar 

  49. Jena NK, Chandrakumar KRS, Ghosh SK (2009) J Phys Chem C 113:17885

    CAS  Google Scholar 

  50. Lin L, Lievens P, Nguyen MT (2010) Chem Phys Lett 498:296

    CAS  Google Scholar 

  51. Fernández EM, Torres MB, Balbás LC (2009) Eur Phys J D 52:135

    Google Scholar 

  52. Le HT, Lang SM, De Haeck J, Lievens P, Janssens E (2012) Phys Chem Chem Phys 14:9350

    CAS  Google Scholar 

  53. Frisch MJ et al (2009) Gaussian 09 Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  54. Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  55. Becke AD (1996) J Chem Phys 104:1040

    CAS  Google Scholar 

  56. Peterson KA (2003) J Chem Phys 119:11099

    CAS  Google Scholar 

  57. Peterson KA, Puzzarini C (2005) Theor Chem Accounts 114:283

    CAS  Google Scholar 

  58. Harvey JN (2006) Annu Rep Prog Chem Sect C Phys Chem 102:203

    CAS  Google Scholar 

  59. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757

    CAS  Google Scholar 

  60. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) Phys Rev A 77:053202

    Google Scholar 

  61. Perdew JP (1986) Phys Rev B 33:8822; 34: 7406

    Google Scholar 

  62. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids ’91. Akademie Verlag, Berlin, p 11

    Google Scholar 

  63. Perdew JP, Burke K, Enzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Google Scholar 

  64. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  65. Lee C, Yang W, Parr RG (1988) Phys Rev B Conden Matter Mater Phys 37:785

    CAS  Google Scholar 

  66. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    CAS  Google Scholar 

  67. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398

    CAS  Google Scholar 

  68. Adamo C, Barone V (1997) Chem Phys Lett 274:242

    CAS  Google Scholar 

  69. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    CAS  Google Scholar 

  70. Schmider HL, Becke AD (1998) J Chem Phys 108:9624

    CAS  Google Scholar 

  71. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Google Scholar 

  72. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129; (2004) J Chem Phys 121: 11507

    CAS  Google Scholar 

  73. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    CAS  Google Scholar 

  74. Raghavachari K, Trucks GW, Pople JA, Gordon MH (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  75. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513

    CAS  Google Scholar 

  76. Morse MD (1986) Chem Rev 86:1079

    Google Scholar 

  77. Koutecký VB, Burda J, Mitrić R, Ge M, Zampella G, Fantucci P (2002) J Chem Phys 117:3120

    Google Scholar 

  78. Häkkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003) J Phys Chem A 107:6168

    Google Scholar 

  79. Neumaier M, Weigend F, Hampe O, Kappe MM (2005) J Chem Phys 122:104702

    Google Scholar 

  80. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Program, Madison, Wisconsin, USA

    Google Scholar 

  81. Iseda M, Nishio T, Han SY, Yoshida H, Terasaki A, Kondow T (1997) J Chem Phys 106:2182

    Google Scholar 

  82. Tenderholt A (2005) PyMOlyze-2.0. Stanford University, Stanford

    Google Scholar 

  83. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994

    CAS  Google Scholar 

  84. Xiao L, Tollberg B, Hu X, Wang L (2006) J Chem Phys 124:114309

    Google Scholar 

  85. Idrobo JC, Walkosz W, Yip SF, Ögut S, Wang J, Jellinek J (2007) Phys Rev B76:205422

    Google Scholar 

  86. Han Y (2006) J Chem Phys 124:024316

    Google Scholar 

  87. Li X, Kiran B, Cui LF, Wang LS (2005) Phys Rev Lett 95:253401

    Google Scholar 

  88. Zhang M, He LM, Zhao LX, Feng XJ, Luo YH (2009) J Phys Chem C 113:6491

    CAS  Google Scholar 

  89. Höltzl T, Lievens P, Veszprémi T, Nguyen MT (2009) J Phys Chem C 113:21016

    Google Scholar 

  90. Chen MX, Yan XH (2008) J Chem Phys 128:174305

    Google Scholar 

  91. Barreteau C, Desjonqueres MC, Spanjaard D (2000) Eur Phys J D 11:395

    CAS  Google Scholar 

  92. Stener M, Nardelli A, Fronzoni G (2008) Chem Phys Lett 462:358

    CAS  Google Scholar 

  93. Höltzl T, Veldeman N, Haeck JD, Veszprémi T, Lievens P, Nguyen MT (2009) Chem Eur J 15:3970

    Google Scholar 

  94. Lechtken A, Schooss D, Stairs JR, Blom MN, Furche F, Morgner N, Kostko O, von Issendorff B, Kappes MM (2007) Angew Chem Int Ed 46:2944

    CAS  Google Scholar 

  95. Jug K, Zimmermann B, Calaminizi P, Kçster A (2002) J Chem Phys 116:4497

    CAS  Google Scholar 

  96. Li J, Li X, Zhai HJ, Wang LS (2003) Science 299:864

    CAS  Google Scholar 

  97. Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) J Chem Phys 126:084505

    Google Scholar 

  98. Fernández EM, Soler JM, Garzón IL, Balbás LC (2004) Phys Rev B 70:165403

    Google Scholar 

  99. Zhao HY et al (2010) Phys Lett A 374:1033

    CAS  Google Scholar 

  100. Wang J, Wang G, Zhao J (2002) Phys Rev B 66:035418

    Google Scholar 

  101. Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PDW (1989) J Chem Phys 91:1762

    CAS  Google Scholar 

  102. Schwerdtfeger P, Dolg M (1991) Phys Rev A 43:1644

    CAS  Google Scholar 

  103. Die D, Kuang XY, Guo JJ, Zheng BX (2009) J Mol Struct Theochem 54:902

    Google Scholar 

  104. Die D, Kuang XY, Guo JJ, Zheng BX (2010) J Phys Chem Solids 71:770

    Google Scholar 

  105. Tanaka H, Neukermans S, Janssens E, Silverans RE (2003) J Chem Phys 119:14

    Google Scholar 

  106. Die D, Kuang XY, Guo JJ, Zheng BX (2010) Physica A 389:5216

    Google Scholar 

  107. Martin TP (1996) Phys Rep 273:199

    CAS  Google Scholar 

  108. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    CAS  Google Scholar 

  109. Knickelbein MB (1999) Annu Rev Phys Chem 50:79

    CAS  Google Scholar 

  110. Pakiari AH, Jamshidi Z (2007) J Phys Chem A 111:4391

    CAS  Google Scholar 

  111. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) J Am Chem Soc 125:588

    CAS  Google Scholar 

Download references

Acknowledgements

PVN thanks the Can Tho University for support. MTN is indebted to the KU Leuven Research Council (GOA and IDO programs) and thanks ICST and the Department of Science and Technology of Ho Chi Minh City, Vietnam for supporting his stays in Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jerzy Leszczynski or Minh Tho Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nhat, P.V., Leszczynski, J., Nguyen, M.T. (2014). Growth Mechanism, Energetics and CO Affinities of Vanadium Doped Gold Clusters, AunV with n = 1−20. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_4

Download citation

Publish with us

Policies and ethics