Advertisement

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

  • D. G. Mitchell
  • L. J. Lanzerotti
  • C. K. Kim
  • M. Stokes
  • G. Ho
  • S. Cooper
  • A. Ukhorskiy
  • J. W. Manweiler
  • S. Jaskulek
  • D. K. Haggerty
  • P. Brandt
  • M. Sitnov
  • K. Keika
  • J. R. Hayes
  • L. E. Brown
  • R. S. Gurnee
  • J. C. Hutcheson
  • K. S. Nelson
  • N. Paschalidis
  • E. Rossano
  • S. Kerem

Abstract

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.

Keywords

Magnetosphere Ring current Time-of-flight Radiation belt Space weather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-I. Akasofu, In memoriam Sydney Chapman. Space Sci. Rev. 11, 599–606 (1970) ADSCrossRefGoogle Scholar
  2. H. Alfvén, A theory of magnetic storms and of the aurorae. K. Sven. Vetenskapakad. Handl., Ser. 3 18(3) (1939) (Reprinted in part with comments by Alex Dessler and John Wilcox in Eos 51, 180–194 (1970)) Google Scholar
  3. H. Alfvén, A theory of magnetic storms and of the aurorae, II, The aurorae; III, The magnetic disturbances. K. Sven. Vetenskapakad. Handl., Ser. 3 18(9) (1940) Google Scholar
  4. V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Lühr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027 (1992) ADSCrossRefGoogle Scholar
  5. S. Barabash, P.C. Brandt, O. Norberg, R. Lundin, E.C. Roelof, C.J. Chase, B.H. Mauk, H. Koskinen, Energetic neutral atom imaging by the Astrid microsatellite. Adv. Space Res. 20, 1055–1060 (1997). doi: 10.1016/S0273-1177(97)00560-7 ADSCrossRefGoogle Scholar
  6. W. Baumjohann, G. Paschmann, H. Lühr, Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801 (1990) ADSCrossRefGoogle Scholar
  7. P.C. Brandt, S. Ohtani, D.G. Mitchell, M.C. Fok, E.C. Roelof, R. Demajistre, Global ENA observations of the storm main-phase ring current: implications for skewed electric fields in the inner magnetosphere. Geophys. Res. Lett. 29(20), 1954 (2002). doi: 10.1029/2002GL015160 ADSCrossRefGoogle Scholar
  8. S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, I, The initial phase. J. Geophys. Res. 36, 77–97, 171–186 (1931) Google Scholar
  9. S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, I, The initial phase (continued). J. Geophys. Res. 37, 147–156, 421–429 (1932) Google Scholar
  10. S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms, II, The main phase. J. Geophys. Res. 38, 79–96 (1933) ADSCrossRefGoogle Scholar
  11. M. Chen, C.-P. Wang, M. Schulz, L.R. Lyons, Solar-wind influence on MLT dependence of plasma sheet conditions and their effects on storm time ring current formation. Geophys. Res. Lett. 34, L14112 (2007). doi: 10.1029/2007GL030189 ADSCrossRefGoogle Scholar
  12. A.J. Dessler, Swedish iconoclast recognized after many years of rejection and obscurity. Science 170, 604–606 (1970) ADSCrossRefGoogle Scholar
  13. S. Dubyagin, V. Sergeev, S. Apatenkov, V. Angelopoulos, A. Runov, R. Nakamura, W. Baumjohann, J. McFadden, D. Larson, Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 38, L08102 (2011). doi: 10.1029/2011GL047016 ADSCrossRefGoogle Scholar
  14. Y. Ebihara, M. Ejiri, Simulation study on fundamental properties of the storm-time ring current. J. Geophys. Res. 105, 15843–15859 (2000). doi: 10.1029/1999JA900493 ADSCrossRefGoogle Scholar
  15. Y. Ebihara, M. Ejiri, Numerical simulation of the ring current: review. Space Sci. Rev. 105(1–2), 377 (2003) ADSCrossRefGoogle Scholar
  16. D. Fairfield et al., Geotail observations of substorm onset in the inner magnetotail. J. Geophys. Res. 103(A1), 103 (1998) ADSCrossRefGoogle Scholar
  17. D. Fairfield et al., Earthward flow bursts in the inner magnetotail and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity. J. Geophys. Res. 104(A1), 355 (1999) ADSCrossRefGoogle Scholar
  18. M.C. Fok, R.A. Wolf, R.W. Spiro, T.E. Moore, Comprehensive computational model of Earth’s ring current. J. Geophys. Res. 106(A5), 8417–8424 (2001) ADSCrossRefGoogle Scholar
  19. C.S. Gillmor, The formation and early evolution of studies of the magnetosphere, in Discovery of the Magnetosphere, ed. by C.S. Gillmor, J.R. Sprieter (American Geophysical Union, Washington, 1997) CrossRefGoogle Scholar
  20. M.G. Henderson, G.D. Reeves, H.E. Spence, R.B. Sheldon, A.M. Jorgensen, J.B. Blake, J.F. Fennell, First energetic neutral atom images from polar. Geophys. Res. Lett. 24, 1167–1170 (1997). doi: 10.1029/97GL01162 ADSCrossRefGoogle Scholar
  21. T. Hori, A.T.Y. Lui, S. Ohtani, P.C. Brandt, B.H. Mauk, R.W. McEntire, K. Maezawa, T. Mukai, Y. Kasaba, H. Hayakawa, Storm-time convection electric field in the near-Earth plasma sheet. J. Geophys. Res. 110, A04213 (2005). doi: 10.1029/2004JA010449 ADSCrossRefGoogle Scholar
  22. V.K. Jordanova, L.M. Kistler, C.J. Farrugia, R.B. Torbert, Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106(A), 29705 (2001). doi: 10.1029/2001JA000047 ADSCrossRefGoogle Scholar
  23. J.U. Kozyra, M.W. Liemohn, Ring current energy input and decay. Space Sci. Rev. 109, 105–131 (2003) ADSCrossRefGoogle Scholar
  24. J.U. Kozyra, V.K. Jordanova, J.E. Borovsky, M.F. Thomsen, D.J. Knipp, D.S. Evans, D.J. McComas, T.E. Cayton, Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm. J. Geophys. Res. 103, 26285 (1998) ADSCrossRefGoogle Scholar
  25. L.J. Lanzerotti, A. Hasegawa, C.G. Maclennan, Drift mirror instability in the magnetosphere: particle and field oscillations and electron heating. J. Geophys. Res. 74(24), 5565–5578 (1969). doi: 10.1029/JA074i024p05565 ADSCrossRefGoogle Scholar
  26. M.W. Liemohn, J.U. Kozyra, V.K. Jordanova, G.V. Khazanov, M.F. Thomsen, T.E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett. 26, 2845 (1999) ADSCrossRefGoogle Scholar
  27. G.H. Ludwig, The birth of Explorer I, in Opening Space Research: Dreams, Technology, and Scientific Discovery (AGU, Washington, 2011), pp. 245–262. doi: 10.1029/2011062SP011 Google Scholar
  28. A.T.Y. Lui, R.W. McEntire, S.M. Krimigis, Evolution of the ring current during two geomagnetic storms. J. Geophys. Res. 92(A7), 7459–7470 (1987) ADSCrossRefGoogle Scholar
  29. D.G. Mitchell, K.C. Hsieh, C.C. Curtis, D.C. Hamilton, H.D. Voss, E.C. Roelof, P.C. Brandt, Imaging two geomagnetic storms in energetic neutral atoms. Geophys. Res. Lett. 28, 1151–1154 (2001). doi: 10.1029/2000GL012395 ADSCrossRefGoogle Scholar
  30. D.G. Mitchell, P.C. Brandt, E.C. Roelof, D.C. Hamilton, K.C. Retterer, S. Mende, Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003). doi: 10.1023/B:SPAC.0000007513.55076.00 ADSCrossRefGoogle Scholar
  31. R. Nakamura, W. Baumjohann, B. Klecker, Y. Bogdanova, A. Balogh, H. Reme, J.M. Bosqued, I. Dandouras, J.A. Sauvaud, K.-H. Glassmeier, L. Kistler, C. Mouikis, T.L. Zhang, H. Eichelberger, A.A. Runov, Motion of the dipolarization front during a flow burst event observed by cluster. Geophys. Res. Lett. 29(20), 1942 (2002). doi: 10.1029/2002GL015763 ADSCrossRefGoogle Scholar
  32. E.N. Parker, Adventures with the geomagnetic field, in Discovery of the Magnetosphere, ed. by C.S. Gillmor, J.R. Sprieter (American Geophysical Union, Washington, 1997) Google Scholar
  33. E.C. Roelof, D.G. Mitchell, D.J. Williams, Energetic neutral atoms (E∼50 keV) from the ring current—IMP 7/8 and ISEE-1. J. Geophys. Res. 90, 10991–11008 (1985). doi: 10.1029/JA090iA11p10991 ADSCrossRefGoogle Scholar
  34. A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, M. Bonnell, J.P. McFadden, D. Larson, K.H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi: 10.1029/2009GL038980 ADSCrossRefGoogle Scholar
  35. A. Runov, V. Angelopoulos, X.-Z. Zhou, X.J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116(A5) (2011). doi: 10.1029/2010JA016316
  36. A. Schmidt, Das erdmagnetische Aussenfeld. Z. Geophys. 1, 3–13 (1924) Google Scholar
  37. K. Shiokawa, W. Baumjohann, G. Haerendel, Braking of high-speed flows in the near-Earth tail. Geophys. Res. Lett. 24(1), 1179 (1997). doi: 10.1029/97GL01062 ADSCrossRefGoogle Scholar
  38. K. Shiokawa, W. Baumjohann, G. Haerendel, G. Paschmann, J.F. Fennell, E. Friis-Christensen, H. Luhr et al., High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations. J. Geophys. Res. 103(A), 4491 (1998). doi: 10.1029/97JA01680 ADSCrossRefGoogle Scholar
  39. S.F. Singer, A new model of magnetic storms and aurorae. Eos 38, 175–190 (1957) Google Scholar
  40. M.I. Sitnov, N.A. Tsyganenko, A.Y. Ukhorskiy, P.C. Brandt, Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. J. Geophys. Res. 113, A07218 (2008). doi: 10.1029/2007JA013003 ADSCrossRefGoogle Scholar
  41. D.P. Stern, A brief history of magnetospheric physics before the spaceflight era. Rev. Geophys. 27(1), 103 (1989). doi: 10.1029/RG027i001p00103 ADSCrossRefGoogle Scholar
  42. C. Stoermer, Sur la situation de la zone de fréquence maximum des aurores boréales d’aprés la théorie corpusculaire. C. R. Acad. Sci. 151, 736–739 (1910) Google Scholar
  43. C. Stoermer, Sur les trajectories des corpuscules electrises dans l’espace sous l’actions des magnetisme terrestre avec application aux auarores boréales, seconde memoire. Arch. Sci. Phys. Nat., Ser. 4 32, 117–123, 190–219, 277–314, 415–436, 505–509 (1911) Google Scholar
  44. C. Stoermer, Sur les trajectories des corpuscules electrises dans l’espace sous l’actions des magnetisme terrestre avec application aux auarores boréales, seconde mernoire (continued). Arch. Sci. Phys. Nat., Ser. 4 33, 51–69, 113–150 (1912) Google Scholar
  45. R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37(22), L22107 (2010). doi: 10.1029/2010GL044990 ADSCrossRefGoogle Scholar
  46. D.L. Turner, Y. Shprits, M. Hartinger, V. Angelopoulos, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys. (2012). doi: 10.1038/NPHYS2185 Google Scholar
  47. A.Y. Ukhorskiy, B.J. Anderson, P.C. Brandt, N.A. Tsyganenko, Storm-time evolution of the outer radiation belt: transport and losses. J. Geophys. Res. 111, A11S03 (2006). doi: 10.1029/2006JA011690 CrossRefGoogle Scholar
  48. A.Y. Ukhorskiy, M.I. Sitnov, K. Takahashi, B.J. Anderson, Radial transport of radiation belt electrons due to stormtime Pc5 waves. Ann. Geophys. 27(5), 2173 (2009). doi: 10.5194/angeo-27-2173-2009 ADSCrossRefGoogle Scholar
  49. R.A. Wolf, J.W. Freeman, B.A. Hausman, R.W. Spiro, R.V. Hilmer, R.L. Lambour, Modeling convection effects in magnetic storms, in Magnetic Storms, ed. by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. Geophysical Monograph Series, vol. 98 (1997), p. 161 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • D. G. Mitchell
    • 1
  • L. J. Lanzerotti
    • 2
  • C. K. Kim
    • 1
  • M. Stokes
    • 1
  • G. Ho
    • 1
  • S. Cooper
    • 1
  • A. Ukhorskiy
    • 1
  • J. W. Manweiler
    • 3
  • S. Jaskulek
    • 1
  • D. K. Haggerty
    • 1
  • P. Brandt
    • 1
  • M. Sitnov
    • 1
  • K. Keika
    • 2
  • J. R. Hayes
    • 1
  • L. E. Brown
    • 1
  • R. S. Gurnee
    • 1
  • J. C. Hutcheson
    • 1
  • K. S. Nelson
    • 1
  • N. Paschalidis
    • 1
  • E. Rossano
    • 1
  • S. Kerem
    • 1
  1. 1.Space DepartmentThe Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Center for Solar Terrestrial Research, Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Fundamental Technologies LLCLawrenceUSA

Personalised recommendations