Advertisement

Microphysics of Quasi-parallel Shocks in Collisionless Plasmas

  • D. BurgessEmail author
  • M. Scholer
Chapter
  • 1.2k Downloads
Part of the Space Sciences Series of ISSI book series (SSSI, volume 47)

Abstract

Shocks in collisionless plasmas require dissipation mechanisms which couple fields and particles at scales much less than the conventional collisional mean free path. For quasi-parallel geometries, where the upstream magnetic field makes a small angle to the shock normal direction, wave-particle coupling produces a broad transition zone with large amplitude, nonlinear magnetic pulsations playing an important role. At high Mach numbers, ion reflection and acceleration are dominant processes which control the structure and dissipation at the shock. Accelerated particles produce a precursor, or foreshock, characterized by low frequency magnetic waves which are convected by the plasma flow into the shock transition zone. The interplay between energetic particles, waves, ion reflection and acceleration leads to a complicated interdependent system. This review discusses the spacecraft observations which have motivated the current view of the high Mach number quasi-parallel shock, and the theories and simulation studies which have led to a better understanding of the microphysics on which the quasi-parallel shock depends.

Keywords

Space plasma Collisionless shock Particle acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Burgess, Cyclical behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345–349 (1989) ADSCrossRefGoogle Scholar
  2. D. Burgess, Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res. 15, 159–169 (1995). doi: 10.1016/0273-1177(94)00098-L ADSCrossRefGoogle Scholar
  3. D. Burgess, E. Möbius, M. Scholer, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. 173(1–4), 5–47 (2012). doi: 10.1007/s11214-012-9901-5 ADSCrossRefGoogle Scholar
  4. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi: 10.1007/s11214-005-3832-3 ADSCrossRefGoogle Scholar
  5. J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The foreshock. Space Sci. Rev. 118, 41–94 (2005). doi: 10.1007/s11214-005-3824-3 ADSCrossRefGoogle Scholar
  6. L. Gargaté, A. Spitkovsky, Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J. 744, 67 (2012). doi: 10.1088/0004-637X/744/1/67 ADSCrossRefGoogle Scholar
  7. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Ion injection and acceleration at parallel shocks—Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993). doi: 10.1086/172157 ADSCrossRefGoogle Scholar
  8. K.I. Golden, L.M. Linson, S.A. Mani, Ion streaming instabilities with application to collisionless shock wave structure. Phys. Fluids 16, 2319–2325 (1973). doi: 10.1063/1.1694299 ADSCrossRefGoogle Scholar
  9. J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, Ion reflection and downstream thermalization at the quasi-parallel bow shock. J. Geophys. Res. 94, 10027–10037 (1989). doi: 10.1029/JA094iA08p10027 ADSCrossRefGoogle Scholar
  10. E.W. Greenstadt, F.L. Scarf, C.T. Russell, R.E. Holzer, V. Formisano, P.C. Hedgecock, M. Neugebauer, Structure of a quasi-parallel, quasi-laminar bow shock. J. Geophys. Res. 82, 651–666 (1977). doi: 10.1029/JA082i004p00651 ADSCrossRefGoogle Scholar
  11. J.R. Kan, D.W. Swift, Structure of the quasi-parallel bow shock—Results of numerical simulations. J. Geophys. Res. 88, 6919–6925 (1983). doi: 10.1029/JA088iA09p06919 ADSCrossRefGoogle Scholar
  12. D. Krauss-Varban, Waves associated with quasi-parallel shocks: Generation, mode conversion and implications. Adv. Space Res. 15, 271–284 (1995). doi: 10.1016/0273-1177(94)00107-C ADSCrossRefGoogle Scholar
  13. D. Krauss-Varban, N. Omidi, Structure of medium Mach number quasi-parallel shocks—Upstream and downstream waves. J. Geophys. Res. 961, 17715 (1991). doi: 10.1029/91JA01545 ADSCrossRefGoogle Scholar
  14. E.A. Lucek, T.S. Horbury, I. Dandouras, H. Rème, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. (Space Phys.) 113, 7 (2008). doi: 10.1029/2007JA012756 CrossRefGoogle Scholar
  15. G. Mann, H. Luehr, W. Baumjohann, Statistical analysis of short large-amplitude magnetic field structures in the vicinity of the quasi-parallel bow shock. J. Geophys. Res. 99, 13315 (1994). doi: 10.1029/94JA00440 ADSCrossRefGoogle Scholar
  16. T.G. Onsager, D. Winske, M.F. Thomsen, Interaction of a finite-length ion beam with a background plasma—Reflected ions at the quasi-parallel bow shock. J. Geophys. Res. 96, 1775–1788 (1991a). doi: 10.1029/90JA02008 ADSCrossRefGoogle Scholar
  17. T.G. Onsager, D. Winske, M.F. Thomsen, Ion injection simulations of quasi-parallel shock re-formation. J. Geophys. Res. 962, 21183 (1991b). doi: 10.1029/91JA01986 ADSCrossRefGoogle Scholar
  18. T.G. Onsager, M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res. 95, 2261–2271 (1990). doi: 10.1029/JA095iA03p02261 ADSCrossRefGoogle Scholar
  19. F.G.E. Pantellini, A. Heron, J.C. Adam, A. Mangeney, The role of the whistler precursor during the cyclic reformation of a quasi-parallel shock. J. Geophys. Res. 97, 1303–1311 (1992). doi: 10.1029/91JA02653 ADSCrossRefGoogle Scholar
  20. E.N. Parker, A quasi-linear model of plasma shock structure in a longitudinal magnetic field. J. Nucl. Energy 2, 146–153 (1961). doi: 10.1088/0368-3281/2/1/323 ADSGoogle Scholar
  21. M. Scholer, Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J. Geophys. Res. 98, 47–57 (1993). doi: 10.1029/92JA01875 ADSCrossRefGoogle Scholar
  22. M. Scholer, D. Burgess, The role of upstream waves in supercritical quasi-parallel shock re-formation. J. Geophys. Res. 97, 8319–8326 (1992). doi: 10.1029/92JA00312 ADSCrossRefGoogle Scholar
  23. M. Scholer, T. Terasawa, Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett. 17, 119–122 (1990). doi: 10.1029/GL017i002p00119 ADSCrossRefGoogle Scholar
  24. M. Scholer, M. Fujimoto, H. Kucharek, Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation. J. Geophys. Res. 98, 18971 (1993). doi: 10.1029/93JA01647 ADSCrossRefGoogle Scholar
  25. M. Scholer, H. Kucharek, V. Jayanti, Waves and turbulence in high Mach number nearly parallel collisionless shocks. J. Geophys. Res. 102, 9821–9834 (1997). doi: 10.1029/97JA00345 ADSCrossRefGoogle Scholar
  26. M. Scholer, H. Kucharek, I. Shinohara, Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J. Geophys. Res. (Space Phys.) 108, 1273 (2003). doi: 10.1029/2002JA009820 ADSCrossRefGoogle Scholar
  27. S.J. Schwartz, D. Burgess, Quasi-parallel shocks—A patchwork of three-dimensional structures. Geophys. Res. Lett. 18, 373–376 (1991). doi: 10.1029/91GL00138 ADSCrossRefGoogle Scholar
  28. S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Luehr, Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209–4227 (1992). doi: 10.1029/91JA02581 ADSCrossRefGoogle Scholar
  29. T. Sugiyama, Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas 18(2), 022302 (2011). doi: 10.1063/1.3552026 ADSCrossRefGoogle Scholar
  30. V.A. Thomas, D. Winske, N. Omidi, Re-forming supercritical quasi-parallel shocks. I—One- and two-dimensional simulations. J. Geophys. Res. 951, 18809–18819 (1990). doi: 10.1029/JA095iA11p18809 ADSCrossRefGoogle Scholar
  31. M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res. 95, 957–966 (1990a). doi: 10.1029/JA095iA02p00957 ADSCrossRefGoogle Scholar
  32. M.F. Thomsen, J.T. Gosling, S.J. Bame, T.G. Onsager, C.T. Russell, Two-state ion heating at quasi-parallel shocks. J. Geophys. Res. 95, 6363–6374 (1990b). doi: 10.1029/JA095iA05p06363 ADSCrossRefGoogle Scholar
  33. W.P. Wilkinson, A.K. Pardaens, S.J. Schwartz, D. Burgess, H. Luehr, R.L. Kessel, M. Dunlop, C.J. Farrugia, Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth’s bow shock. J. Geophys. Res. 98, 3889–3905 (1993). doi: 10.1029/92JA01669 ADSCrossRefGoogle Scholar
  34. D. Winske, V.A. Thomas, N. Omidi, K.B. Quest, Re-forming supercritical quasi-parallel shocks. II—Mechanism for wave generation and front re-formation. J. Geophys. Res. 95, 18821–18832 (1990). doi: 10.1029/JA095iA11p18821 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Astronomy UnitQueen Mary University of LondonLondonUK
  2. 2.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany

Personalised recommendations