Skip to main content

Role of Neural Stem and Progenitor Cells in the Adaptation of the Brain to Injury

  • Chapter
  • First Online:
Endogenous Stem Cell-Based Brain Remodeling in Mammals

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 804 Accesses

Abstract

Although the phenomenon of adult neurogenesis has been intensively described and studied for the past few decades, its relevance to acquired brain injury remains largely unknown. In addition, glial-specific progenitors appear to be quite widespread throughout the brain, and their roles in injury-induced remodeling are also just beginning to emerge. Ongoing adult neurogenesis occurs in two regions of the mammalian brain—the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus within the hippocampus. Because of their well-described role in adult neurogenesis, there has been considerable speculation about how they might function in the setting of injury. Since there is clearly potential for neurogenesis after brain injury, studies have elucidated a differential response to injury in these two regions with stroke-mediated neurogenesis arising primarily from the SVZ and traumatic brain injury-mediated neurogenesis originating from the SGZ. For each, neurogenesis may mediate functional recovery after injury, and the potential mechanisms underlying these effects are being investigated. One goal of these studies is to potentially exploit neurogenesis as a therapeutic modality following acquired brain injuries due to stroke or trauma for which there is currently little to offer outside of supportive care and physical rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AED:

Antiepileptic drug

Ara-C:

Cytosine-B-d-arabinofuranoside

BrdU:

Bromodeoxyuridine

CBF:

Cerebral blood flow

CCI:

Controlled cortical impact

DCX:

Doublecortin

Epo:

Erythropoietin

EpoR:

Erythropoietin receptor

FGF:

Fibroblast growth factor

FPI:

Fluid percussion injury

GFAP:

Glial fibrillary acidic protein

HIE:

Hypoxic–ischemic encephalopathy

HSV-TK:

Herpes simplex virus thymidine kinase

MCAO:

Middle cerebral artery occlusion

MCM2:

Minichromosome maintenance protein

MWM:

Morris water maze

NSPC:

Neural stem/progenitor cell

NSE:

Neuron-specific enolase

PCNA:

Proliferating cell nuclear antigen

PSA-NCAM:

Polysialylated neural cell adhesion molecule

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TBI:

Traumatic brain injury

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  • Arguello AA et al (2008) Time course of morphine’s effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons. Neuroscience 157(1):70–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arvidsson A et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    CAS  PubMed  Google Scholar 

  • Bernaudin M et al (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19(6):643–651

    CAS  PubMed  Google Scholar 

  • Bessa JM et al (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14(8):764–773

    CAS  PubMed  Google Scholar 

  • Biffi A et al (2011a) Statin use and outcome after intracerebral hemorrhage. Neurology 76(18):1581–1588

    CAS  PubMed  Google Scholar 

  • Biffi A et al (2011b) Statin treatment and functional outcome after ischemic stroke. Stroke 42:1314–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaiss C et al (2011) Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci 31(13):4906–4916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bovill JG (1997) Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur J Anaesthesiol 14(Suppl 15):9–15

    CAS  Google Scholar 

  • Brummelte S, Galea LAM (2010) Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 168:680–690

    CAS  PubMed  Google Scholar 

  • Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61(2):203–209

    CAS  PubMed  Google Scholar 

  • Campbell C et al (2004) Medical and cognitive outcome in children with traumatic brain injury. Can J Neurol Sci 31(2):213–219

    CAS  PubMed  Google Scholar 

  • Campo-Soria C, Chang Y, Weiss D (2006) Mechanism of action of benzodiazepine on GABAA receptors. Br J Pharmacol 148(7):984–990

    CAS  PubMed  Google Scholar 

  • Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59(5):735–742

    CAS  PubMed  Google Scholar 

  • Chen J et al (2009) Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J Neurosci Res 87(13):2898–2907

    CAS  PubMed  Google Scholar 

  • D’Hooge R, Deyn PPD (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90

    PubMed  Google Scholar 

  • Dash P, Mach S, Moore A (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 63(4):313–319

    CAS  PubMed  Google Scholar 

  • Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    CAS  PubMed  Google Scholar 

  • Dhandapani K, Brann D (2003) Transforming growth factor-β: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39(1):13–22

    CAS  PubMed  Google Scholar 

  • Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200(1):3–22

    CAS  PubMed  Google Scholar 

  • Dirnagi U, Simon R, Hallenbeck J (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    Google Scholar 

  • Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93(25):14895–14900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duan X et al (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18(1):108–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisch A et al (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A 97(13):7579–7584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103(21):8233–8238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito MS et al (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25(44):10074–10086

    CAS  PubMed  Google Scholar 

  • Fagel D et al (2009) Fgfr1 is required for cortical regeneration and repair after perinatal hypoxia. J Neurosci 29(4):1202–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng X-H, Derynck R (2005) Specificity and versatility in TGF-beta signaling through SMADs. Annu Rev Cell Dev Biol 21:659–693

    CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    CAS  PubMed  Google Scholar 

  • Ferriero D (2004) Neonatal brain injury. N Engl J Med 351(19):1985–1995

    CAS  PubMed  Google Scholar 

  • Fukushima T, Liu R-Y, Byrne JH (2007) Transforming growth factor-β2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons. Hippocampus 17(1):5–9

    CAS  PubMed  Google Scholar 

  • Ge S et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439(7076):589–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilley JA, Kernie SG (2011) Excitatory amino acid transporter 2 and excitatory amino acid transporter 1 negatively regulate calcium-dependent proliferation of hippocampal neural progenitor cells and are persistently upregulated after injury. Eur J Neurosci 34(11):1712–1723

    PubMed  Google Scholar 

  • Goldstein LE et al (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4(134):134ra60

    PubMed Central  PubMed  Google Scholar 

  • Gomes FCA, Sousa Vde O, Romao L (2005) Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci 23(5):413–424

    CAS  PubMed  Google Scholar 

  • Gonzalez F et al (2013) Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 44(3):753–758

    CAS  PubMed  Google Scholar 

  • Green HF et al (2012) A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 49(3):311–321

    CAS  PubMed  Google Scholar 

  • Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factor in neural development. Neuron 71(4):574–588

    CAS  PubMed  Google Scholar 

  • Hayashi T et al (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28(10):2039–2044

    CAS  PubMed  Google Scholar 

  • Hayward NM et al (2010) Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma 27(12):2203–2219

    PubMed  Google Scholar 

  • Henrich-Noack P, Prehn JHM, Krieglstein J (1996) TGF-β1 protects hippocampal neurons against degeneration caused by transient global ischemia. Stroke 27(9):1609–1615

    CAS  PubMed  Google Scholar 

  • Hossman K (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Google Scholar 

  • Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215(2):243–252

    PubMed  Google Scholar 

  • Ijff DM, Aldenkamp AP (2013) Chapter 73—Cognitive side-effects of antiepileptic drugs in children. In: Dulac O, Lassonde M, Harvey BS (eds) Handbook of clinical neurology. Elsevier, Amsterdam, pp 707–718

    Google Scholar 

  • Imayoshi I et al (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    CAS  PubMed  Google Scholar 

  • Inta D et al (2008) Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci U S A 105(52):20994–20999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh N, Ornitz D (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237(1):18–27

    CAS  PubMed  Google Scholar 

  • Jacobs BL, van Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5(3):262–269

    CAS  PubMed  Google Scholar 

  • Jin K et al (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103(35):13198–13202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin K et al (2010) Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A 107(17):7993–7998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joels M et al (2009) Corticosteroid effects on cellular physiology of limbic cells. Brain Res 1293:91–100

    CAS  PubMed  Google Scholar 

  • Karki K et al (2009) Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke 40(10):3384–3389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kee N et al (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362

    CAS  PubMed  Google Scholar 

  • Kernie S, Parent J (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274

    PubMed Central  PubMed  Google Scholar 

  • Kernie SG, Erwin TM, Parada LF (2001) Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66(3):317–326

    CAS  PubMed  Google Scholar 

  • Kirby ED et al (2013) Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2:e00362

    PubMed Central  PubMed  Google Scholar 

  • Klempt ND et al (1992) Hypoxia-ischemia induces transforming growth factor β1 mRNA in the infant rat brain. Mol Brain Res 13(1–2):93–101

    CAS  PubMed  Google Scholar 

  • Koch JD, Kernie SG (2011) Protecting the future: neuroprotective strategies in the pediatric intensive care unit. Curr Opin Pediatr 23(3):275–280

    PubMed  Google Scholar 

  • Kochanek PM et al (2011) Severe traumatic brain injury in infants and children. In: Fuhrman B, Zimmerman J, Carcillo J, Clark R, Relvas M, Rotta A, Thompson A, Tobias J (eds) Pediatric critical care, 4th edn. Elsevier Saunders, Philadelphia, PA, pp 849–870

    Google Scholar 

  • Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27(1):22–32

    CAS  PubMed  Google Scholar 

  • Krieglstein K et al (2011) More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 34(8):421–429

    CAS  PubMed  Google Scholar 

  • Kronenberg G et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467(4):455–463

    PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2008) Neurogenesis following stroke affecting the adult brain. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 549–570

    Google Scholar 

  • Lu D et al (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24(7):1132–1146

    PubMed Central  PubMed  Google Scholar 

  • Lu K-T et al (2011) Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade. J Neurotrauma 28(3):441–450

    PubMed  Google Scholar 

  • Ma M et al (2008) Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci 9:117

    PubMed Central  PubMed  Google Scholar 

  • Macas J et al (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 26(50):13114–13119

    CAS  PubMed  Google Scholar 

  • Magueresse CL et al (2012) Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb Cortex 22(10):2285–2296

    PubMed  Google Scholar 

  • Mahmood A et al (2009) Long-term benefits after treatment of traumatic brain injury with simvastatin in rats. Neurosurgery 65(1):187–192

    PubMed Central  PubMed  Google Scholar 

  • Malberg J et al (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    CAS  PubMed  Google Scholar 

  • Manev H, Uz T, Smalheiser N (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 411(1–2):5

    Google Scholar 

  • Marti-Fabregas J et al (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74(5):357–365

    CAS  PubMed  Google Scholar 

  • Mashimo Y et al (2013) Critical promoter region for statin-induced human endothelial nitric oxide synthase (eNOS) transcription in EA.hy926 cells. J Atheroscler Thromb 20(4):321–329

    CAS  PubMed  Google Scholar 

  • Mathieu P, Piantanida AP, PItossi F (2010) Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation 17:200–201

    CAS  PubMed  Google Scholar 

  • Mattiesen W-R et al (2009) Increased neurogenesis after hypoxic-ischemic encephalopathy in humans is age related. Acta Neuropathol 117(5):525–534

    CAS  PubMed  Google Scholar 

  • Melo AC et al (2013) Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. Int Immunopharmacol 17(1):57–64

    CAS  PubMed  Google Scholar 

  • Meng Y et al (2011) Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 115(3):550–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mengozzi M et al (2012) Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. Proc Natl Acad Sci U S A 109(24):9617–9622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miles DK, Kernie SG (2008) Hypoxic-ischemic brain injury activates early hippocampal stem/progenitor cells to replace vulnerable neuroblasts. Hippocampus 18(8):793–806

    CAS  PubMed  Google Scholar 

  • Monfils M-H et al (2005) Basic fibroblast growth factor stimulates functional recovery after neonatal lesions of motor cortex in rats. Neuroscience 134(1):1–8

    CAS  PubMed  Google Scholar 

  • Monfils M-H et al (2006) FGF-2-induced cell proliferation stimulates anatomical, neurophysiological and functional recovery from neonatal motor cortex injury. Eur J Neurosci 24(3):739–749

    PubMed  Google Scholar 

  • Morimoto M et al (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26(3):235–269

    CAS  PubMed  Google Scholar 

  • Myer D et al (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129(10):2761–2772

    CAS  PubMed  Google Scholar 

  • Pang L et al (2001) Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-β1 expression. Stroke 32:544–552

    CAS  PubMed  Google Scholar 

  • Parent JM, Murphy GG (2008) Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis. Epilepsia 49(Suppl 5):19–25

    PubMed  Google Scholar 

  • Pavlides C et al (1996) Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res 738(2):229–235

    CAS  PubMed  Google Scholar 

  • Pellerin L et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262

    PubMed  Google Scholar 

  • Pendlebury ST, Rothwell PM (2009) Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 8(11):1006–1018

    PubMed  Google Scholar 

  • Petito CK, Feldmann E, Pulsinelli W (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

    CAS  PubMed  Google Scholar 

  • Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22(14):6106–6113

    CAS  PubMed  Google Scholar 

  • Pineda JR et al (2013) Vascular-derived TGF-beta increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med 5(4):548–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raible D et al (2012) GABA(A) receptor regulation after experimental traumatic brain injury. J Neurotrauma 29(16):2548–2554

    PubMed  Google Scholar 

  • Ruocco A et al (1999) A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. J Cereb Blood Flow Metab 19(12):1345–1353

    CAS  PubMed  Google Scholar 

  • Santarelli L et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    CAS  PubMed  Google Scholar 

  • Schaar K, Brenneman M, Savitz S (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2(1):13

    PubMed Central  PubMed  Google Scholar 

  • Sierra C, Coca A, Schiffrin EL (2011) Vascular mechanisms in the pathogenesis of stroke. Curr Hypertens Rep 13(3):200–207

    CAS  PubMed  Google Scholar 

  • Sinner B et al (2011) Toxic effects of midazolam on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+-oscillations. Toxicology 290(1):96–101

    CAS  PubMed  Google Scholar 

  • Skold M et al (2005) VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 22(3):353–367

    PubMed  Google Scholar 

  • Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5(4):378–387

    CAS  PubMed  Google Scholar 

  • Stefovska V et al (2008) Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann Neurol 64(4):434–445

    PubMed  Google Scholar 

  • Tawakol A et al (2013) Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multi-center FDG-PET/CT feasibility study. J Am Coll Cardiol 62(10):909–917

    CAS  PubMed  Google Scholar 

  • Thau-Zuchman O et al (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30(5):1008–1016

    CAS  PubMed  Google Scholar 

  • Thau-Zuchman O et al (2012) Subacute treatment with vascular endothelial growth factor after traumatic brain injury increases angiogenesis and gliogenesis. Neuroscience 202(27):334–341

    CAS  PubMed  Google Scholar 

  • Tsai P et al (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26(4):1269–1274

    CAS  PubMed  Google Scholar 

  • Tsai N-W et al (2011) Statin pre-treatment is associated with lower platelet activity and favorable outcome in patients with acute non-cardio-embolic ischemic stroke. Crit Care 15(4):R163

    PubMed  Google Scholar 

  • Tzeng S-F, Wu J-P (1999) Responses of microglia and neural progenitors to mechanical brain injury. Neuroreport 10(11):2287–2292

    CAS  PubMed  Google Scholar 

  • van Praag H et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    PubMed  Google Scholar 

  • Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27(2–4):81–86

    CAS  PubMed  Google Scholar 

  • Vogel T et al (2010) Transforming growth factor β promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. Cereb Cortex 20(3):661–671

    PubMed  Google Scholar 

  • Waldhoer M, Bartlett S, Whistler J (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    CAS  PubMed  Google Scholar 

  • Wang X et al (1995) Transforming growth factor-β1 exhibits delayed gene expression following focal cerebral ischemia. Brain Res Bull 36(6):607–609

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2007) VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 85(4):740–747

    CAS  PubMed  Google Scholar 

  • Wang X et al (2012) Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS One 7(6):e38932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf SA et al (2009) Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J 23(9):3121–3128

    CAS  PubMed  Google Scholar 

  • Wright J et al (2010) Age-related changes in the oligodendrocyte progenitor pool influence brain remodeling after injury. Dev Neurosci 32(5–6):499–509

    CAS  PubMed  Google Scholar 

  • Wu MD et al (2012) Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun 26(2):292–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2):128–142

    CAS  PubMed  Google Scholar 

  • Yamashita T et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26(24):6627–6636

    CAS  PubMed  Google Scholar 

  • Yang CP et al (2011) ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development 138(20):4351–4362

    CAS  PubMed  Google Scholar 

  • Yang X et al (2012) Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem Biophys Res Commun 420(3):570–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimura S et al (2003) FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest 112(8):1202–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu T-S et al (2005) Temporally regulated expression of Cre recombinase in neural stem cells. Genesis 41(4):147–153

    CAS  PubMed  Google Scholar 

  • Yu T-S et al (2008) Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J Neurosci 28(48):12901–12912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    CAS  PubMed  Google Scholar 

  • Zheng W et al (2013) Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma 30(22):1872–1880

    PubMed  Google Scholar 

  • Zhu Y et al (2000) The expression of transforming growth factor-beta 1 in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Res 866(1–2):286–298

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Kernie M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hong, S., Yu, TS., Kernie, S.G. (2014). Role of Neural Stem and Progenitor Cells in the Adaptation of the Brain to Injury. In: Junier, MP., Kernie, S. (eds) Endogenous Stem Cell-Based Brain Remodeling in Mammals. Stem Cell Biology and Regenerative Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7399-3_4

Download citation

Publish with us

Policies and ethics