Skip to main content

Links Between Injury-Induced Brain Remodeling and Oncogenesis

  • Chapter
  • First Online:
Endogenous Stem Cell-Based Brain Remodeling in Mammals

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 773 Accesses

Abstract

The remarkable progress achieved in the identification of potential cellular and molecular players in neural tissue repair puts us at the edge of the development of therapeutic strategies that could effectively alleviate the consequences of CNS injuries. In face of this novel hope, it appears timely to assess the data derived from research on brain repair and on brain neoplasms. The cell rearrangements initiated by injury to nervous tissues are indeed characterized by the transient reacquisition of features usually associated with cancer cells including genomic perturbations, reentrance into the cell cycle, and aberrant cell differentiation. All these changes can be viewed as intrinsic neoplastic features of neural cells reacting to tissue injuries. The existence of common features between brain cancer cells, developing neural cells of the immature and mature brain, and/or injured nervous tissues has to be acknowledged in order to develop the most appropriate therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

8-OxoG:

8-Oxoguanine

Ascl1:

Achaete–scute complex-like 1

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3 related

bFGF:

Fibroblast growth factor 2 (basic)

BRAC1:

Breast cancer 1

BRCA2:

Breast cancer 2

Brn2a:

Brain-2

CDK:

Cyclin-dependent kinase

chk1:

Checkpoint kinase 1

chk2:

Checkpoint kinase 2

CNS:

Central nervous system

CNV:

Copy number variations

CSC:

Cancer stem cells

DSBs:

DNA double-strand breaks

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

ESCs:

Embryonic stem cells

GFAP:

Glial fibrillary acidic protein

GSC:

Glioma stem cells

H3K27me:

Histone H3 lysine 27 methylation

H3K4me:

Histone H3 lysine 4 methylation

H3K9me:

Histone H3 lysine 9 methylation

ΗΒ-ΕGF:

Heparin-binding EGF-like growth factor

HR:

Homologous recombination

iPSCs:

Induced pluripotent cells

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

Myt1l:

Myelin transcription factor-like 1

NEIL1:

Endonuclease VIII-like 1

NEIL3:

Endonuclease VIII-like 3

NF1:

Neurofibromin 1

NHEJ:

Nonhomologous end-joining

NPC:

Neural progenitor cells

NSC:

Neural stem cells

OGG1:

8-Oxoguanine DNA glycosylase

PDGFR:

Platelet-derived growth factor receptor

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PTEN:

Phosphatase and tensin homolog

Rb:

Retinoblastoma

RCAS-TVA:

Replication-competent avian sarcoma-leukosis virus splice acceptor-avian receptor tv-a

RTK:

Tyrosine kinase receptors

SSA:

Single-strand annealing

Shh:

Sonic hedgehog

TGFα:

Transforming growth factor alpha

References

  • Aguirre A, Gallo V (2007) Reduced EGFR signaling in progenitor cells of the adult subventricular zone attenuates oligodendrogenesis after demyelination. Neuron Glia Biol 3:209–220

    PubMed Central  PubMed  Google Scholar 

  • Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8:145–155

    CAS  PubMed  Google Scholar 

  • Alcantara Llaguno SR, Chen J, Parada LF (2009) Signaling in malignant astrocytomas: role of neural stem cells and its therapeutic implications. Clin Cancer Res 15:7124–7129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alves JA, Barone P, Engelender S, Froes MM, Menezes JR (2002) Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone. J Neurobiol 52:251–265

    PubMed  Google Scholar 

  • Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46:125–135

    CAS  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    CAS  PubMed  Google Scholar 

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1:269–277

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    CAS  PubMed  Google Scholar 

  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Gotz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  • Beck G, Fainzilber M (2002) Genetic models meet trophic mechanisms: EGF family members are gliatrophins in Drosophila. Neuron 33:673–675

    CAS  PubMed  Google Scholar 

  • Becker AJ, Blumcke I, Urbach H, Hans V, Majores M (2006) Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 65:99–108

    CAS  PubMed  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  • Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320

    CAS  PubMed  Google Scholar 

  • Birecree E, Whetsell WO Jr, Stoscheck C, King LE Jr, Nanney LB (1988) Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease. J Neuropathol Exp Neurol 47:549–560

    CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bras J, Guerreiro R, Hardy J (2012) Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 13:453–464

    CAS  PubMed  Google Scholar 

  • Bredel M, Pollack IF, Hamilton RL, James CD (1999) Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5:1786–1792

    CAS  PubMed  Google Scholar 

  • Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105:3581–3586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  • Canugovi C, Yoon JS, Feldman NH, Croteau DL, Mattson MP, Bohr VA (2012) Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc Natl Acad Sci U S A 109:14948–14953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW, Baker SJ (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19:305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow LM, Zhang J, Baker SJ (2008) Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17:919–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christie KJ, Turnley AM (2012) Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front cell Neurosci 6:70

    PubMed Central  PubMed  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark PA, Treisman DM, Ebben J, Kuo JS (2007) Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 236:3297–3308

    CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins VP (2004) Brain tumours: classification and genes. J Neurol Neurosurg Psychiatry 75(Suppl 2):ii2–ii11

    PubMed  Google Scholar 

  • Coskun V, Tsoa R, Sun YE (2012) Epigenetic regulation of stem cells differentiating along the neural lineage. Curr Opin Neurobiol 22:762–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    CAS  PubMed  Google Scholar 

  • Crowe SL, Movsesyan VA, Jorgensen TJ, Kondratyev A (2006) Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur J Neurosci 23:2351–2361

    PubMed Central  PubMed  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    CAS  PubMed  Google Scholar 

  • da Lee Y, Gianino SM, Gutmann DH (2012) Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22:131–138

    PubMed Central  Google Scholar 

  • Dawson MR, Levine JM, Reynolds R (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res 61:471–479

    CAS  PubMed  Google Scholar 

  • Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    CAS  PubMed  Google Scholar 

  • De Filippis L, Delia D (2011) Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 68:2831–2844

    CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    CAS  PubMed  Google Scholar 

  • Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, Auger N, Leonard N, Daudigeos E, Dantas-Barbosa C, Grill J, Lazar V, Dessen P, Vassal G, Prevot V, Sharif A, Chneiweiss H, Junier MP (2009) Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells 27:2373–2382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    CAS  PubMed  Google Scholar 

  • Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD (1993) Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer 53:209–214

    CAS  PubMed  Google Scholar 

  • Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365

    CAS  PubMed  Google Scholar 

  • Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, de-la-Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H, Virolle T (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19(2):232–244

    CAS  PubMed  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    CAS  PubMed  Google Scholar 

  • Ferrer I, Alcantara S, Ballabriga J, Olive M, Blanco R, Rivera R, Carmona M, Berruezo M, Pitarch S, Planas AM (1996) Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor-receptor (EGF-R) immunoreactivity in normal and pathologic brain. Prog Neurobiol 49:99–123

    CAS  PubMed  Google Scholar 

  • Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ (2004) Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 64:7773–7779

    CAS  PubMed  Google Scholar 

  • Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frosina G (2010) The bright and the dark sides of DNA repair in stem cells. J Biomed Biotechnol 2010:845396

    PubMed Central  PubMed  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    CAS  PubMed  Google Scholar 

  • Gao X, Chen J (2013) Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol 239:38–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P (2010) NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20:399–411

    PubMed  Google Scholar 

  • Gonzalez F, Georgieva D, Vanoli F, Shi ZD, Stadtfeld M, Ludwig T, Jasin M, Huangfu D (2013) Homologous recombination DNA repair genes play a critical role in reprogramming to a pluripotent state. Cell Rep 3:651–660

    CAS  PubMed  Google Scholar 

  • Guo Y, Liu S, Wang P, Zhao S, Wang F, Bing L, Zhang Y, Ling EA, Gao J, Hao A (2011) Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology 59:763–775

    PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Harris H (2004) Tumour suppression: putting on the brakes. Nature 427:201

    CAS  PubMed  Google Scholar 

  • Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373

    PubMed Central  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802

    CAS  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    CAS  PubMed  Google Scholar 

  • Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci U S A 101:14443–14448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    CAS  PubMed  Google Scholar 

  • Huse JT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19:132–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huse JT, Phillips HS, Brennan CW (2011) Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 59:1190–1199

    PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220

    CAS  PubMed  Google Scholar 

  • Isono M, Goda M, Kobayashi H, Wu JL (2003) TGF-alpha overexpression induces astrocytic hypertrophy after cortical stab wound injury. Neurol Res 25:546–550

    CAS  PubMed  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011) Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Trans 118:193–202

    Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Nakayama T, Mizuguchi N, Yamanaka S, Tabuchi M, Munakata H, Hashimoto S, Ito A, Satou T (2013) Appearance of neural stem cells around the damaged area following traumatic brain injury in aged rats. J Neural Trans 120:361–374

    Google Scholar 

  • Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28:914–922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin K, Mao XO, Sun Y, Xie L, Jin L, Nishi E, Klagsbrun M, Greenberg DA (2002) Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci 22:5365–5373

    CAS  PubMed  Google Scholar 

  • Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SE, White E, Eden C, Hogg T, Northcott P, Mack S, Neale G, Wang YD, Coyle B, Atkinson J, DeWire M, Kranenburg TA, Gillespie Y, Allen JC, Merchant T, Boop FA, Sanford RA, Gajjar A, Ellison DW, Taylor MD, Grundy RG, Gilbertson RJ (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junier MP (2000) What role(s) for TGFalpha in the central nervous system? Prog Neurobiol 62:443–473

    CAS  PubMed  Google Scholar 

  • Junier MP, Hill DF, Costa ME, Felder S, Ojeda SR (1993) Hypothalamic lesions that induce female precocious puberty activate glial expression of the epidermal growth factor receptor gene: differential regulation of alternatively spliced transcripts. J Neurosci 13:703–713

    CAS  PubMed  Google Scholar 

  • Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A 102:6143–6147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    CAS  PubMed  Google Scholar 

  • Kornblum HI, Hussain R, Wiesen J, Miettinen P, Zurcher SD, Chow K, Derynck R, Werb Z (1998) Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 53:697–717

    CAS  PubMed  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829

    CAS  PubMed  Google Scholar 

  • Kurimoto M, Endo S, Arai K, Horie Y, Nogami K, Takaku A (1994) TM-1 cells from an established human malignant glioma cell line produce PDGF, TGF-alpha, and TGF-beta which cooperatively play a stimulatory role for an autocrine growth promotion. J Neurooncol 22:33–44

    CAS  PubMed  Google Scholar 

  • Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27

    CAS  PubMed  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    CAS  PubMed  Google Scholar 

  • Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14:4716–4730

    CAS  PubMed  Google Scholar 

  • Levine JM, Stincone F, Lee YS (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7:307–321

    CAS  PubMed  Google Scholar 

  • Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, Xia S, Trageser D, Guerrero-Cazares H, Eberhart CG, Quinones-Hinojosa A, Scheffler B, Laterra J (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A 108:9951–9956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 96:7526–7531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindberg N, Holland EC (2012) PDGF in gliomas: more than just a growth factor? Ups J Med Sci 117:92–98

    PubMed Central  PubMed  Google Scholar 

  • Lisovoski F, Blot S, Lacombe C, Bellier JP, Dreyfus PA, Junier MP (1997) Transforming growth factor alpha expression as a response of murine motor neurons to axonal injury and mutation-induced degeneration. J Neuropathol Exp Neurol 56:459–471

    CAS  PubMed  Google Scholar 

  • Liu B, Neufeld AH (2004) Activation of epidermal growth factor receptors directs astrocytes to organize in a network surrounding axons in the developing rat optic nerve. Dev Biol 273:297–307

    CAS  PubMed  Google Scholar 

  • Liu D, Croteau DL, Souza-Pinto N, Pitta M, Tian J, Wu C, Jiang H, Mustafa K, Keijzers G, Bohr VA, Mattson MP (2011) Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J Cereb Blood Flow Metab 31:680–692

    CAS  PubMed  Google Scholar 

  • Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell M, Naber SP, Wolfe HJ, Hedley-Whyte ET, Galanopoulos T, Neville-Golden J, Antoniades HN (1991) Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51:1345–1351

    CAS  PubMed  Google Scholar 

  • Mazzoleni S, Galli R (2012) Gliomagenesis: a game played by few players or a team effort? Front Biosci 4:205–213

    Google Scholar 

  • Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R (2010) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70:7500–7513

    CAS  PubMed  Google Scholar 

  • McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moorthy RK, Rajshekhar V (2004) Development of glioblastoma multiforme following traumatic cerebral contusion: case report and review of literature. Surg Neurol 61:180–184, discussion 184

    PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    CAS  PubMed  Google Scholar 

  • Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093

    CAS  PubMed  Google Scholar 

  • Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, Hainfellner JA, Heppner FL, Dietrich PY, Zimmer Y, Cairncross JG, Janzer RC, Domany E, Delorenzi M, Stupp R, Hegi ME (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024

    CAS  PubMed  Google Scholar 

  • Nicolis SK (2007) Cancer stem cells and “stemness” genes in neuro-oncology. Neurobiol Dis 25:217–229

    CAS  PubMed  Google Scholar 

  • Nieto-Sampedro M, Gomez-Pinilla F, Knauer DJ, Broderick JT (1988) Epidermal growth factor receptor immunoreactivity in rat brain astrocytes. Response to injury. Neurosci Lett 91:276–282

    CAS  PubMed  Google Scholar 

  • Nishiyama A, Yu M, Drazba JA, Tuohy VK (1997) Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. J Neurosci Res 48:299–312

    CAS  PubMed  Google Scholar 

  • O’Rourke DM, Qian X, Zhang HT, Davis JG, Nute E, Meinkoth J, Greene MI (1997) Trans receptor inhibition of human glioblastoma cells by erbB family ectodomains. Proc Natl Acad Sci U S A 94:3250–3255

    PubMed Central  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241

    CAS  PubMed  Google Scholar 

  • Ohm JE, Baylin SB (2007) Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell cycle 6:1040–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pack SD, Weil RJ, Vortmeyer AO, Zeng W, Li J, Okamoto H, Furuta M, Pak E, Lubensky IA, Oldfield EH, Zhuang Z (2005) Individual adult human neurons display aneuploidy: detection by fluorescence in situ hybridization and single neuron PCR. Cell cycle 4:1758–1760

    CAS  PubMed  Google Scholar 

  • Panosyan EH, Laks DR, Masterman-Smith M, Mottahedeh J, Yong WH, Cloughesy TF, Lazareff JA, Mischel PS, Moore TB, Kornblum HI (2010) Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatr Blood Cancer 55(4):644–651

    PubMed  Google Scholar 

  • Patru C, Romao L, Varlet P, Coulombel L, Raponi E, Cadusseau J, Renault-Mihara F, Thirant C, Leonard N, Berhneim A, Mihalescu-Maingot M, Haiech J, Bieche I, Moura-Neto V, Daumas-Duport C, Junier MP, Chneiweiss H (2010) CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer 10:66

    PubMed Central  PubMed  Google Scholar 

  • Pedersen PH, Ness GO, Engebraaten O, Bjerkvig R, Lillehaug JR, Laerum OD (1994) Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF-alpha, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int J Cancer 56:255–261

    CAS  PubMed  Google Scholar 

  • Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S, Mutoh T, Rehen SK, Chun J (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32:16213–16222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Planas AM, Justicia C, Soriano MA, Ferrer I (1998) Epidermal growth factor receptor in proliferating reactive glia following transient focal ischemia in the rat brain. Glia 23:120–129

    CAS  PubMed  Google Scholar 

  • Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G, Coni S, Di Marcotullio L, Biffoni M, Massimi L, Di Rocco C, Screpanti I, Gulino A (2010) Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J 29:2646–2658

    CAS  PubMed  Google Scholar 

  • Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552

    CAS  PubMed  Google Scholar 

  • Rankin SL, Zhu G, Baker SJ (2012) Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol 38:254–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisakk P, Zhu B, Meyer M, Bronson RT, Garcia-Verdugo JM, Khoury SJ (2011) Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69:878–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98:13361–13366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180

    CAS  PubMed  Google Scholar 

  • Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    CAS  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    CAS  PubMed  Google Scholar 

  • Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    CAS  PubMed  Google Scholar 

  • Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822

    CAS  PubMed  Google Scholar 

  • Sanin V, Heess C, Kretzschmar HA, Schuller U (2013) Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia. Neuropathol Appl Neurobiol 39:510–518

    CAS  PubMed  Google Scholar 

  • Saxena A, Ali IU (1992) Increased expression of genes from growth factor signaling pathways in glioblastoma cell lines. Oncogene 7:243–247

    CAS  PubMed  Google Scholar 

  • Sejersted Y, Hildrestrand GA, Kunke D, Rolseth V, Krokeide SZ, Neurauter CG, Suganthan R, Atneosen-Asegg M, Fleming AM, Saugstad OD, Burrows CJ, Luna L, Bjoras M (2011) Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc Natl Acad Sci U S A 108:18802–18807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharif A, Prévot V, Renault-Mihara F, Allet C, Studler JM, Canton B, Chneiweiss H, Junier MP (2006) Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene25(29):4076–4085

    CAS  PubMed  Google Scholar 

  • Sharif A, Legendre P, Prévot V, Allet C, Roamo L, Stuler JM, Chneiweiss H, Junier MP (2007) TGFalpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene 26(19):2695–2706

    CAS  PubMed  Google Scholar 

  • Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, Albin MG, Emnett RJ, Loeser S, Watson MA, Nagarajan R, Gutmann DH (2007) Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 67:890–900

    CAS  PubMed  Google Scholar 

  • Shi Y, Sun G, Zhao C, Stewart R (2008) Neural stem cell self-renewal. Crit Rev Oncol 65:43–53

    Google Scholar 

  • Shih AH, Holland EC (2004) Developmental neurobiology and the origin of brain tumors. J Neurooncol 70:125–136

    PubMed  Google Scholar 

  • Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF (1998) A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo J 17:719–731

    CAS  PubMed  Google Scholar 

  • Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP (2011) The origins of glioma: E Pluribus Unum? Glia 59:1135–1147

    CAS  PubMed  Google Scholar 

  • Silver DJ, Steindler DA (2009) Common astrocytic programs during brain development, injury and cancer. Trends Neurosci 32:303–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    CAS  PubMed  Google Scholar 

  • Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 12:426–439

    CAS  PubMed  Google Scholar 

  • Smith JA, Park S, Krause JS, Banik NL (2013) Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 62:764–775

    CAS  PubMed  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 108:4274–4280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathologica 119:7–35

    PubMed Central  PubMed  Google Scholar 

  • Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat Neurosci 16:613–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sulli G, Di Micco R, Fagagna AD (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12:709–720

    CAS  PubMed  Google Scholar 

  • Sun Y, Goderie SK, Temple S (2005) Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45:873–886

    CAS  PubMed  Google Scholar 

  • Talos F, Moll UM (2010) Role of the p53 family in stabilizing the genome and preventing polyploidization. Adv Exp Med Biol 676:73–91

    CAS  PubMed  Google Scholar 

  • Tang P, Steck PA, Yung WK (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 35:303–314

    CAS  PubMed  Google Scholar 

  • Taylor AM, Byrd PJ (2005) Molecular pathology of ataxia telangiectasia. J Clin Pathol 58:1009–1015

    CAS  PubMed  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    CAS  PubMed  Google Scholar 

  • Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Tavares Sdos R, Studler JM, Silvestre DC, Susini A, Villa C, Miquel C, Bogeas A, Surena AL, Dias-Morais A, Leonard N, Pflumio F, Bieche I, Boussin FD, Sainte-Rose C, Grill J, Daumas-Duport C, Chneiweiss H, Junier MP (2011) Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PloS one 6:e16375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thirant C, Gavard J, Junier MP, Chneiweiss H (2013) Critical multiple angiogenic factors secreted by glioblastoma stem-like cells underline the need for combinatorial anti-angiogenic therapeutic strategies. Proteomics Clin Appl 7:79–90

    CAS  PubMed  Google Scholar 

  • Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Bjorklund A, Grealish S, Parmar M (2013) Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A 110:7038–7043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    CAS  PubMed  Google Scholar 

  • Tsai HC, Baylin SB (2011) Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 21:502–517

    CAS  PubMed  Google Scholar 

  • Turchi L, Debruyne DN, Almairac F, Virolle V, Fareh M, Neirijnck Y, Burel-Vandenbos F, Paquis P, Junier MP, Van Obberghen-Schilling E, Chneiweiss H, Virolle T (2013) Tumorigenic Potential of miR-18A* in Glioma Initiating Cells Requires NOTCH-1 Signaling. Stem Cells 31:1252–1265

    CAS  PubMed  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    CAS  PubMed  Google Scholar 

  • Vitucci M, Hayes DN, Miller CR (2011) Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. Brit J Cancer 104:545–553

    CAS  PubMed  Google Scholar 

  • von Werder A, Seidler B, Schmid RM, Schneider G, Saur D (2012) Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nature Protoc 7:1167–1183

    Google Scholar 

  • Wagner B, Natarajan A, Grunaug S, Kroismayr R, Wagner EF, Sibilia M (2006) Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. Embo J 25:752–762

    CAS  PubMed  Google Scholar 

  • Wang S, Chandler-Militello D, Lu G, Roy NS, Zielke A, Auvergne R, Stanwood N, Geschwind D, Coppola G, Nicolis SK, Sim FJ, Goldman SA (2010) Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting. J Neurosci 30:14635–14648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Esbensen Y, Kunke D, Suganthan R, Rachek L, Bjoras M, Eide L (2011) Mitochondrial DNA damage level determines neural stem cell differentiation fate. J Neurosci 31:9746–9751

    CAS  PubMed  Google Scholar 

  • Weickert CS, Blum M (1995) Striatal TGF-alpha: postnatal developmental expression and evidence for a role in the proliferation of subependymal cells. Brain Res Dev Brain Res 86:203–216

    CAS  PubMed  Google Scholar 

  • Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J (2008) Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 507:1944–1951

    PubMed  Google Scholar 

  • Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, Kelly OG, Wang A, D’Amour KA, Robins AJ, Won KJ, Kaestner KH, Sander M (2013) Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem cell 12:224–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Yuan X, Liu G, Black KL, Yu JS (2008) Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26:3018–3026

    CAS  PubMed  Google Scholar 

  • Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23:10454–10462

    CAS  PubMed  Google Scholar 

  • Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53:385–390

    CAS  PubMed  Google Scholar 

  • Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PloS One 2:e558

    PubMed Central  PubMed  Google Scholar 

  • Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A (2010) NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. Embo J 29:2659–2674

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of the authors is supported by the Institut National de la Santé et de la Recherche Médicale Inserm (France), INCa (Grant PLBIO2012), and the foundations ARC and La Ligue contre le cancer (Grant Equipe Ligue 2013). E. El-Habr benefited from a fellowship of Région Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Junier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Habr, E.A., Junier, MP. (2014). Links Between Injury-Induced Brain Remodeling and Oncogenesis. In: Junier, MP., Kernie, S. (eds) Endogenous Stem Cell-Based Brain Remodeling in Mammals. Stem Cell Biology and Regenerative Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7399-3_10

Download citation

Publish with us

Policies and ethics