Skip to main content

Abstract

Water is the most abundant compound in the brain. In gray matter, water constitutes 80–88% of the total fresh weight; in white matter, 65–72%. This difference correlates with the amount of myelin present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Hanai and D. A. Haydon, The permeability to water of bimolecular lipid membranes, J. Theoret. Biol. 11: 370–382 (1966).

    Article  CAS  Google Scholar 

  2. A. Cass and A. Finkelstein, Water permeability of thin lipid membranes, J. Gen. Physiol. 50: 1765–1784 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. A. Mauro, Nature of sol-vent transfer in osmosis, Science 126: 252–253 (1957).

    Article  PubMed  CAS  Google Scholar 

  4. E. A. Bering, Jr., Water exchange of central nervous system and cerebrospinal fluid, J. Neurosurg. 9: 275–287 (1952). -

    Google Scholar 

  5. N. A. Coulter, Filtration coefficient of the capillaries of the brain, Am. J. Physiol. 195: 459–464 (1958).

    PubMed  Google Scholar 

  6. R. Edstrom, in International Review of Neurobiology (C. C. Pfeiffer and J. R. Smythres, Eds.), p. 153, Academic Press, New York (1964).

    Google Scholar 

  7. J. D. Fenstermacher and J. A. Johnson, Filtration and reflection coefficients of the rabbit blood—brain barrier, Am. J. Physiol. 211: 341–346 (1966).

    PubMed  CAS  Google Scholar 

  8. K. Welch and V. Friedman, The cerebrospinal fluid values, Brain 83: 454–469 (1960).

    Article  PubMed  CAS  Google Scholar 

  9. A. Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Cambridge University Press, Cambridge (1965).

    Google Scholar 

  10. C. Crone, The permeability of capillaries in various organs as determined by use of the indicator diffusion method, Acta Physiol. Scand. 58: 292–305 (1963).

    Article  PubMed  CAS  Google Scholar 

  11. H. Schimmel and R. Siagus, tutorial in preparation.

    Google Scholar 

  12. R. Katzman, H. Schimmel, and C. E. Wilson, Diffusion of inulin as a measure of extra-cellular fluid space in brain, Leo M. Davidoff Festschrift, Proc. Rudolf Virchow Med. Soc. City N.Y. Suppl. 26: 254 (1968).

    Google Scholar 

  13. G. N. Ling, M. M. Ochsenfeld, and G. Karreman, Is the cell membrane a universal rate-limiting barrier to the movement of water between the living cell and its surrounding medium? J. Gen. Physiol. 50: 1807–1820 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. D. J. Reed and D. M. Woodbury, Effect of hypertonic urea on cerebrospinal fluid pressure of brain volume, J. Physiol. 164: 252–264 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

  15. L. T. Bullock, M. I. Gregersen, and R. Kinney, The use of hypertonic sucrose solution intravenously to reduce cerebrospinal fluid pressure without a secondary rise, Am. J. Physiol. 112: 82–86 (1935).

    CAS  Google Scholar 

  16. J. H. Masserman, Effects of the intravenous administration of hypertonic solutions of sucrose, Johns Hopkins Hosp. Bull. 57: 12–21 (1935).

    CAS  Google Scholar 

  17. M. Javid and P. Settlage, Effect of urea on CSF pressure in human subjects, J. Am. Med. Assoc. 160: 943–949 (1956).

    Article  PubMed  CAS  Google Scholar 

  18. J. A. Zadunaisky, F. Wald, and E. D. P. DeRobertis, Osmotic behavior and ultrastructural modifications in isolated frog brain, Exptl. Neurol. 8: 290–309 (1963).

    Article  Google Scholar 

  19. S. A. Luse and B. Harris, Brain ultrastructure in hydration and dehydration, Arch. Neurol. 4: 139–153 (1961).

    Article  PubMed  CAS  Google Scholar 

  20. R. A. Clasen, P. M. Cooke, S. Pandolfi, G. Carnecki, and G. Bryor, Hypertonic urea in experimental cerebral edema, Arch. Neurol. 12: 424–434 (1965).

    Article  PubMed  CAS  Google Scholar 

  21. S. Mandell, J. M. Taylor, D. G. Kotsilimbas, and L. C. Scheinberg, The effect of glycerol on cerebral edema induced by tri-ethyltin sulphate in rabbits, J. Neurosurg. 24: 984–986 (1966).

    Article  PubMed  CAS  Google Scholar 

  22. D. J. Reed and D. M. Woodbury, Effect of urea and acetazolamide on brain volume and cerebrospinal fluid pressure, J. Physiol. 164: 265–273 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katzman, R., Schimmel, H. (1969). Water Movement. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics