Chemistry of Isolated Invertebrate Neurons

  • Ezio Giacobini


In neurobiology, perhaps more than in any other field of biology, there are. considerable advantages in dealing with “simpler” systems and with “model” systems. Even in the lower invertebrates the degree of organization and differentiation of the nervous system is sufficiently high for the fundamental mechanisms of transmission, conduction, and integration to be studied. However, some scientists still hesitate to compare the properties of neurons of the vertebrate central nervous system with those of the invertebrate nervous system.


Nerve Cell Impulse Activity Electric Organ Pyridine Nucleotide Stretch Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. H. Lowry, The quantitative histochemistry of the brain, J. Histochem. Cytochem. 1: 420–427 (1953).PubMedCrossRefGoogle Scholar
  2. 2.
    E. M. Eisenstein and G. H. Krasilovsky, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 329–332, The University of Chicago Press, Chicago (1967).Google Scholar
  3. 3.
    N. Chalazonitis, Chémopotentiels des neurones géants fonctionnellement différenciés, Arch. Sci. Physiol. 13 (1): 1–38 (1959).Google Scholar
  4. 4.
    N. Chalazonitis and M. Gola, Analyses microspectrophotométriques relatives à quelques catalyseurs respiratoires dans le neurone isolé (Helix pomatia), Arch. Sci. Physiol. 158: 1908 (1964).Google Scholar
  5. 5.
    Th. H. Bullock and G. A. Horridge, Structure and Function in the Nervous Systems of Invertebrates, W. H. Freeman, San Francisco (1965).Google Scholar
  6. 6a.
    E. Giacobini, in Second International Meeting of Pharmacology (Prague), Symposium on Drugs and Enzymes (B. B. Brodie, ed.), Vol. 1, pp. 55–63, Pergamon Press, New York (1965).Google Scholar
  7. 6b.
    E. Giacobini, Metabolism and function studied in single neurons, Annal. Inst. Super. Sanità 1: 500–520 (1965).Google Scholar
  8. 7.
    E. Giacobini, in Neurosciences Research (S. Ehrenpreis and O. Solnitsky, Eds.), Vol. 1, Academic Press, New York (1968).Google Scholar
  9. 8.
    St. W. Kuflier and J. G. Nicholls, The Physiology of Neuroglial Cells, Springer Verlag, Berlin (1966).Google Scholar
  10. 9.
    D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289 (1965).PubMedGoogle Scholar
  11. 10.
    E. Giacobini, E. Handelman, and C. A. Terzuolo, An isolated neuron preparation for studies of metabolic events at rest and during impulse activity, Science 140: 74–75 (1963).PubMedCrossRefGoogle Scholar
  12. 11.
    C. A. Terzuolo, B. Chance, E. Handelman, L. Rossini, and P. Schmelzer, Measurements of reduced pyridine nucleotides in a single neuron, Biochim. Biophys. Acta 126: 361–372 (1966).PubMedCrossRefGoogle Scholar
  13. 12.
    N Chalazonitis and A. Arvanitaki, Chromoprotéides et succinoxydase dans divers grains isolables du protoplasme neuronique, Arch. Sci. Physiol. 10: 291–319 (1956).Google Scholar
  14. 13.
    J. S. Alexandrowitz, Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris, Quart. J. Microscop. Sci. 92: 163–199 (1951).Google Scholar
  15. 14.
    B. Chance, P. Cohen, F. Jobsis, and B. Schoener, Intracellular oxidation-reduction states in vivo, Science 137: 499–508 (1962).PubMedCrossRefGoogle Scholar
  16. 15.
    B. Chance and A. V. Legallais, A spectrofluorometer for recording of intracellular oxidation-reduction states, IEEE Trans. Biomed. Electron. 10: 40 (1963).Google Scholar
  17. 16.
    J. E. Treherne, The Neurochemistry of Arthropods, Cambridge University Press, Cambridge (1966).Google Scholar
  18. 17.
    W. Grampp and J. E. Edström, The effect of nervous activity on ribonucleic acid of the crustacean receptor neuron, J. Neurochem. 10: 725–731 (1963).PubMedCrossRefGoogle Scholar
  19. 18.
    J. E. Edström and W. Grampp, Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron, J. Neurochem. 12: 735–741 (1965).PubMedCrossRefGoogle Scholar
  20. 19.
    H. Hydén, in The Cell (J. Brachet and A. Mirsky, Eds.), Vol. IV, p. 215, Academic Press, New York (1960).Google Scholar
  21. 20.
    J. E. Edström, D. Eichner, and A. Edström, The ribonucleic acid of axons and myelin sheaths from Mauthner neurons, Biochem. Biophys. Acta 61: 178–184 (1962).PubMedGoogle Scholar
  22. 21.
    G. Toschi and E. Giacobini, Puromycin and the impulse activity of crayfish stretch receptor neuron, Life Sci. 4: 1831–1834 (1965).PubMedCrossRefGoogle Scholar
  23. 22.
    E. Giacobini, The effect of metabolic and ion transport inhibitors on the impulse activity and the oxygen uptake of an isolated crustacean neurone, Acta Physiol. Scand. 66: 34–48 (1966).PubMedCrossRefGoogle Scholar
  24. 23.
    E. Giacobini, S. Hovmark, and Z. Kometiani, Intracellular variations of Na+ and K+ in isolated nerve cells. Acta Physiol. Scand. 71: 391–400 (1967).PubMedCrossRefGoogle Scholar
  25. 24.
    B. G. Wallin, Intracellular ion concentrations in single crayfish axons, Acta Physiol. Scand. 70: 419–430 (1967).PubMedCrossRefGoogle Scholar
  26. 25.
    M. G. Larrabee, Oxygen consumption of excised sympathetic ganglia at rest and in activity, J. Neurochem. 2: 81–101 (1958).PubMedCrossRefGoogle Scholar
  27. 26.
    P. F. Cranefield, F. Brink, and D. W. Bronk, The oxygen uptake of the peripheral nerve of the rat, J. Neurochem. 1: 245–249 (1957).PubMedCrossRefGoogle Scholar
  28. 27.
    E. Giacobini, Neurophysiological and biochemical correlations in isolated nerve cell preparations at rest and during impulse activity, Abst. 2nd Intern. Meeting Pharmacol. (Prague), Suppl. 12, 107 (1963).Google Scholar
  29. 28.
    J. M. Ritchie, The oxygen consumption of mammalian non-myelinated nerve fibers at rest and during activity, J. Physiol. 188: 309–329 (1967).PubMedPubMedCentralGoogle Scholar
  30. 29.
    B. C. Abbott, A. V. Hill, and J. V. Howarth, The positive and negative heat production associated with a nerve impulse, Proc. Roy. Soc. B148: 149–187 (1958).CrossRefGoogle Scholar
  31. 30.
    S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin. Invest. 27: 476–483 (1948).PubMedCrossRefPubMedCentralGoogle Scholar
  32. 31.
    K. A. C. Elliott and I. H. Heller, in Metabolism of the Nervous System (D. Richter, ed.), p. 286, Pergamon Press, London (1958).Google Scholar
  33. 32.
    S. R. Korey and M. Orchen, Relative respiration of neuronal and glial cells, J. Neurochem. 3: 277–285 (1959).PubMedCrossRefGoogle Scholar
  34. 33.
    Giacobini, The distribution and localization of cholinesterases in nerve cells. Academic dissertation, Acta Physiol. Scand. 45: Suppl. 156 (1959).Google Scholar
  35. 34.
    A. Hamberger, Oxidation of tricarboxylic acid cycle intermediates by nerve cell bodies, J. Neurochem. 8: 31–35 (1961).PubMedCrossRefGoogle Scholar
  36. 35.
    H. Hydén and P. W. Lange, The steady state and endogenous respiration in neuron and glia, Acta Physiol. Scand. 64: 6–14 (1965).PubMedCrossRefGoogle Scholar
  37. 36.
    M. H. Epstein and J. S. O’Connor, Respiration of single cortical neurons and of surrounding neuropile, J. Neurochem. 12: 389–395 (1965).PubMedCrossRefGoogle Scholar
  38. 37.
    Ch. Edwards, C. A. Terzuolo, and Y. Washizu, The effect of changes of the ionic environment upon an isolated crustacean sensory neuron, J. Neurophysiol. 26: 948–957 (1963).PubMedGoogle Scholar
  39. 38.
    C. Eyzaguirre and S. W. Kufiier, Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish, J. Gen. Physiol. 39: 87–119 (1955).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 39.
    O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18–30 (1964).PubMedGoogle Scholar
  41. 40.
    E. Giacobini and A. Grasso, Variations of glycolytic intermediates, phosphate compounds and pyridine nucleotides after prolonged stimulation of an isolated crustacean neurone, Acta Physiol. Scand. 66: 49–57 (1966).PubMedCrossRefGoogle Scholar
  42. 41.
    E. Giacobini, in Neurosciences Research (S. Ehrenpreis and O. Solnitsky, Eds.), Vol. 2, Academic Press, New York (1969).Google Scholar
  43. 42.
    C. A. Terzuolo, G. Bonewell, E. Giacobini, E. Handelman, and S. Lin, Metabolic studies in a single isolated nerve cell, Federation Proc. Abstr. 23: 130 (1964).Google Scholar
  44. 43.
    L. Rossini, H. P. Cohen, E. Handelman, S. Lin, and C. A. Terzuolo, Measurements of oxidoreduction processes and ATP levels in an isolated crustacean neuron, Ann. N.Y. Acad. Sci. 137: 864–876 (1966).PubMedCrossRefGoogle Scholar
  45. 44a.
    N. Chalazonitis, M. Gola, and A. Arvanitaki, Oscillations lentes du potentiel de membrane neuronique, fonction de la pOZ intracellulaire. Neurones autoactifs d’Aplysia depilans, Compt. Rend. Soc. Biol. 159: 2451 (1965).Google Scholar
  46. 44b.
    N. Chalazonitis, M. Gola, and A. Arvanitaki, Microspectrophotométrie différentielle sur des neurones géants in vivo (Aplysia depilans). Measure de la diffusibilité de l’oxygène, Compt. Rend. Soc. Biol. 159: 2440 (1965).Google Scholar
  47. 45.
    N. Chalazonitis and M. Gola, Enregistrements simultanés de la p°2 intracellulaire et de l’autoactivité électrique du neurone géant (Aplysia depilans). Comps. Rend. Soc. Biol. 159: 1770 (1965).Google Scholar
  48. 46.
    N. Chalazonitis and H. Takeuchi, Variations de l’excitabilité directe somatique, en hyperoxie (neurones géants d’Aplysia fasciata et Helix pomatia), Compt. Rend. Soc. Biol. 1588: 2400 (1964).Google Scholar
  49. 47.
    E. Florey, Chemical transmission and adaptation, J. Gen. Physiol. 40: 533–545 (1957).PubMedCrossRefPubMedCentralGoogle Scholar
  50. 48.
    C. A. G. Wiersma, E. Furshpan, and E. Florey, Physiological and pharmacological observations on muscle receptor organs of the crayfish, cambarus clarkii girard, J. Exptl. Biol. 30: 136–150 (1953).Google Scholar
  51. H. McLennan and D. H. York, Cholinoceptive receptors of crayfish stretch receptor neurones, Comp. Biochem. Physiol. 17: 327–333 (1966).CrossRefGoogle Scholar
  52. 50.
    E. A. Maynard and D. M. Maynard, Cholinesterase in the crustacean muscle receptor organ, J. Histochem. Cytochem. 8: 376–379 (1960).PubMedCrossRefGoogle Scholar
  53. 51.
    D. Nachmansohn, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York (1959).Google Scholar
  54. 52.
    H. Hydén and A. Pigon, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6: 57–72 (1960).PubMedCrossRefGoogle Scholar
  55. 53.
    D. H. Burrin and R. B. Beechey, Cytochrome oxidase and cytochromes a and a3 in crab mitochondria, Biochem. J. 87: 48–53 (1963).PubMedPubMedCentralGoogle Scholar
  56. 54.
    H. Hydén and P. W. Lange, A kinetic study of the neuron-glial relationship, J. Cell Biol. 13: 233–237 (1962).PubMedCrossRefPubMedCentralGoogle Scholar
  57. 55.
    A. Hamberger and H. Hydén, Inverse enzymatic changes in neurons and glia during increased function and hypoxia, J. Cell Biol. 16: 521–525 (1963).PubMedCrossRefPubMedCentralGoogle Scholar
  58. 56.
    A. Hamberger and J. Sjöstrand, Respiratory enzyme activities in neurons and glial cells of the hypoglossal nucleus during nerve regeneration, Acta Physiol. Scand. 67: 76–88 (1966).PubMedCrossRefGoogle Scholar
  59. 57.
    Z. P. Kometiani, Free radicals and active ion transport, Biophysics 10: 389 (1965).Google Scholar
  60. 58.
    Z. Kometiani and R. H. Cagan, An electron spin resonance signal in brain microsomes, Biochim. Biophys. Acta 135: 1083–1086 (1967).PubMedCrossRefGoogle Scholar
  61. 59.
    M. Gola and N. Chalazonitis, Measures spectrophotométriques de la saturation en oxygéne de l’hémoprotéine d’Aplysia depilans, Compt. Rend. Soc. Biol. 159: 1777 (1965).Google Scholar
  62. 60.
    E. Giacobini and J. F. Jongkind, The physiological significance of the pentose shunt in invertebrate neurons, Acta Physiol. Scand. 73: 255–256 (1968).PubMedCrossRefGoogle Scholar
  63. 61.
    J. Katz and R. Rongstad, The labeling of pentose phosphate from glucose-’4C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis, Biochemistry 6: 2227–2247 (1967).PubMedCrossRefGoogle Scholar
  64. 62.
    M. A. McWhinnie and J. D. O’Connor, Metabolism and low temperature acclimation in the temperate crayfish, Orconectes virilis, Comp. Biochem. Physiol. 20: 131–145 (1967).CrossRefGoogle Scholar
  65. 63.
    J. A. Riegel, Blood glucose in crayfishes in relation to moult and handling, Nature 186: 727 (1960).CrossRefGoogle Scholar
  66. 64.
    R. L. Puyear, C. H. Wang, and A. W. Pritchard, Catabolic pathways of carbohydrate in the intermolt crayfish, Pacifastacus leniusculus, Comp. Biochem. Physiol. 14: 145–153 (1965).PubMedCrossRefGoogle Scholar
  67. 65a.
    E. Giacobini and P. C. Marchisio, lsyruvate, glutamate and tricarboxylic acid intermediates in the crustacean stretch receptor neurone after prolonged impulse activity, Acta Physiol. Scand. 66: 248–248 (1966).Google Scholar
  68. 65b.
    E. Giacobini and P. C. Marchisio, The action of tricarboxylic acid cycle intermediates and glutamate on the impulse activity and respiration of the crayfish stretch receptor neurone, Acta Physiol. Scand. 66: 58–66 (1966).PubMedCrossRefGoogle Scholar
  69. 66.
    E. Giacobini and P. C. Marchisio, Glutamate and the slow adapting stretch receptor neuron of the crayfish (SRN): Its effect on impulse activity and respiration, and its level before and after physiological stimulation, IV Intern. Meet. Neurobiol. (Stockholm) (C. Euler, S. Skoglund, and V. Siderberg, Eds.), pp. 395–399, Pergamon Press, New York (1968).Google Scholar
  70. 67.
    H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2 fixation in mammalian brain in vivo, J. Neurochem. 11: 717–728 (1964).PubMedCrossRefGoogle Scholar
  71. 68.
    L. J. Coté, S. C. Cheng, and H. Waelsch, CO2 fixation in the nervous system, J. Neurochem. 13: 721–729 (1966).CrossRefGoogle Scholar
  72. 69.
    A. L. Hodgkin and R. D. Keynes, Movements of cations during recovery in nerve. Symp. Soc. Exptl. Biol. 8: 423 (1954).Google Scholar
  73. 70.
    A. M. Shanes and D. E. S. Brown, The effect of metabolic inhibitors on the resting potential of frog nerve, J. Cell. Comp. Physiol. 19: 1–13 (1942).CrossRefGoogle Scholar
  74. 71.
    P. C. Caldwell, The phosphorus metabolism of squid axons and its relationship to the active transport of sodium, J. Physiol. 152: 545–560 (1960).PubMedPubMedCentralGoogle Scholar
  75. 72.
    P. C. Caldwell, A. L. Hodgkin, R. D. Keynes, and T. I. Shaw, The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of loligo, J. Physiol. 152: 561–590 (1960).PubMedPubMedCentralGoogle Scholar
  76. 73.
    P. C. Caldwell and R. D. Keynes, Phosphagen break-down and lactic acid formation on stimulation of the electric organ of Electrophorus, J. Physiol. 169: 37P - 38P (1963).Google Scholar
  77. 74.
    X. Aubert, B. Chance, and R. D. Keynes, Optical studies of biochemical events in the electric organ of Electrophorus, Proc. Roy. Soc. 160: 211–245 (1964).CrossRefGoogle Scholar
  78. 75.
    P. K. Maitra, A. Ghosh, B. Schoener, and B. Chance, Transients in glycolytic metabolism following electrical activity in electrophorus, Biochim. Biophys. Acta 88: 112–119 (1964).PubMedGoogle Scholar
  79. 76.
    R. W. Gerard, Nerve metabolism, Physiol. Rev. 12: 469–592 (1932).Google Scholar
  80. 77.
    W. D. Dettbarn and F. C. G. Hoskin, Changes of glucose metabolism during lobster-nerve activity, Biochim. Biophys. Acta 50: 568–570 (1961).PubMedCrossRefGoogle Scholar
  81. 78.
    B. Carlsson, B. E. Giacobini, and S. Hovmark, A modified microflamephotometric technique for Na+ and K+ determinations in individual somatic cells (Abstr. Scand. Physiol. Congr., Abo 1966), Acta Physiol. Scand. Suppl. 277, 68: 32 (1966).Google Scholar
  82. 79.
    E. Giacobini, Energy metabolism and ion transport studied in single neurons (Proc. Symp. Biophys. Physiol. Biol. Transport, Rome), Protoplasma 63: 52–55 (1967).PubMedCrossRefGoogle Scholar
  83. 80.
    B. Carlsson, E. Giacobini, and S. Hovmark, Measurement of intracellular Na’ and K+ in single cells by means of a modified microflamephotometric technique, Acta Physiol. Scand. 71: 379–390 (1967).PubMedCrossRefGoogle Scholar
  84. 81.
    J. Villegas, L. Villegas, and R. Villegas, Sodium, potassium and chloride concentrations in the Schwann cell and axon of the squid nerve fiber, J. Gen. Physiol. 49: 1–7 (1965).PubMedCrossRefPubMedCentralGoogle Scholar
  85. 82.
    T. L. D’Yakonova, B. N. Veprintsev, A. F. Chapas, and V. Ya. Brodskii, Induction of RNA synthesis in neurons by electrical activity, Biofizika 10: 826 (1965).Google Scholar
  86. 83.
    A. B. Kogan and S. L. Zaguskin, Relationship between ribonucleic acid patterns and electrical activity of single stretch neuron of crayfish muscle during excitation and inhibition, J. Evol. Biol. Physiol. 1: 59–66 (1965).Google Scholar
  87. 84.
    H. Hydén, Protein metabolism in the nerve cell during growth and function, Acta Physiol. Scand. Suppl. 17, 6: 1–136 (1943).Google Scholar
  88. 85.
    M. J. Cohen, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 65–78, The University of Chicago Press, Chicago (1967).Google Scholar
  89. 86.
    D. R. Curtis, J. W. Phillis, and J. C. Watkins, The depression of spinal neurones by y-aminon-butyric acid and -alanine, J. Physiol. 146: 185–203 (1959).PubMedPubMedCentralGoogle Scholar
  90. 87.
    C. Edwards and S. W. Kuffler, The blocking effect of y-aminobutyric acid (GABA) and the action of related compounds on single nerve cells, J. Neurochem. 4: 19–30 (1959).PubMedCrossRefGoogle Scholar
  91. 88.
    K. Krnjevic and J. W. Phillis, The action of certain amino acids on cortical neurones, J. Physiol. (London) 159: 62–63 (1961).Google Scholar
  92. 89.
    J. S. Coombs, J. C. Eccles, and P. Fatt, The specific ionic conductances and the ionic movement across the motoneuronal membrane that produce the inhibitory postsynaptic potential, J. Physiol. 130: 326–373 (1955).PubMedPubMedCentralGoogle Scholar
  93. 90.
    F. Brink, D. W. Bronk, and M. G. Larrabee, Chemical excitation of nerve, Ann. N.Y. Acad. Sci. 47: 457–485 (1946).CrossRefGoogle Scholar
  94. 91.
    B. Falck and Ch. Owman, A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic amines, Acta Univ. Lund, Sect. II (7), 1–23 (1965).Google Scholar
  95. 92.
    E. Giacobini, The effect of metabolic inhibitors on the respiration of an isolated neuron preparation (Abstr. XI Scand. Physiol. Congr., Copenhagen), Acta. Physiol. Scand. Suppl. 213, 59: 48 (1963).Google Scholar
  96. 93.
    A. M. Pappenheimer and C. M. Williams, Cytochrome b 5 and the dihydrocoenzyme I-oxidase system in the Cecropia silkworm, J. Biol. Chem. 209: 915–929 (1954).PubMedGoogle Scholar
  97. 94.
    A. G. M. Mattisson, The pattern of cellular respiration and its relation to the ultrastructure of the cell. A comparative study on invertebrate muscles, Thesis, University of Lund (1962).Google Scholar
  98. 95.
    E. M. Lieberman, Structural and functional sites of action of ultraviolet radiations in crab nerve fibers. II. Localization of the sites of action of UV radiation by experiments with Cat+ and ouabain, Exceptl. Cell Res. 47: 508–517 (1967).CrossRefGoogle Scholar
  99. 96.
    G. A. Kerkut, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 5–37, The University of Chicago Press, Chicago (1967).Google Scholar
  100. 97.
    C. A. G. Wiersma, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 363–364, The University of Chicago Press, Chicago (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Ezio Giacobini
    • 1
  1. 1.Department of PharmacologyKarolinska InstitutStockholmSweden

Personalised recommendations