Advertisement

Water Spaces

  • Hanna M. Pappius

Abstract

The interpretation of many physiological and pathological processes requires precise information about the relative sizes of the extracellular and the intracellular compartments of tissues and their dynamic relationships.

Keywords

Extracellular Space Intracellular Compartment Cerebral Tissue True Equilibrium Water Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Manery and L. F. Haege, The extent to which radioactive chloride penetrates tissues, and its significance, Am. J. Physiol. 134: 83–93 (1941).Google Scholar
  2. 2.
    D. M. Woodbury, P. S. Timiras, A. Koch, and A. Ballard, Distribution of radiochloride, radiosulfate, and inulin in brain of rats, Federation Proc. 15: 501–502 (1956).Google Scholar
  3. 3.
    R. L. Schultz, E. A. Maynard, and D. C. Pease, Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum, Am. J. Anat. 100: 369–407 (1957).PubMedCrossRefGoogle Scholar
  4. 4.
    E. DeRobertis and H. M. Gerschenfeld, Submicroscopic morphology and function of glial cells, Intern. Rev. Neurobiol. 3: 1–65 (1961).CrossRefGoogle Scholar
  5. 5.
    H. M. Pappius, The distribution of water in brain tissues swollen in vitro and in vivo, Progr. Brain Res. 15: 135–154 (1965).CrossRefGoogle Scholar
  6. 6.
    A. Vernadakis and D. M. Woodbury, Cellular and extracellular spaces in developing rat brain, Arch. Neurol. 12: 284–293 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Dayson, Physiology of Cerebrospinal Fluid, J. and A. Churchill, Ltd., London (1967).Google Scholar
  8. 8.
    A. Van Harreveld, Brain. Tissue Electrolytes, Butterworths, Washington (1966).Google Scholar
  9. 9.
    J. A. Zadunaisky and P. F. Curran, Sodium fluxes in isolated frog brain, Am. J. Physiol. 205: 949–956 (1963).PubMedGoogle Scholar
  10. 10.
    A. Ames, III, and F. B. Nesbett, Intracellular and extracellular compartments of mammalian central nervous tissue, J. Physiol. (London) 184: 216–238 (1966).Google Scholar
  11. 11.
    J. S. Coombs, J. C. Eccles, and P. Fatt, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential, J. Physiol. (London) 130: 326–373 (1955).Google Scholar
  12. 12.
    R. F. Kibler, R. P. O’Neill, and E. D. Robin, Intracellular acid-base relations of dog brain with reference to the brain extracellular volume, J. Clin. Invest. 43: 431–443 (1964).PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    R. S. Bourke, E. S. Greenberg, and D. B. Tower, Variations of cerebral cortex fluid spaces in vivo as a function of species brain size, Am. J. Physiol. 208: 682–692 (1965).PubMedGoogle Scholar
  14. 14.
    C. F. Barlow, N. S. Domek, M. A. Goldberg, and L. J. Roth, Extracellular brain space measured by S35 sulfate, Arch. Neurol. 5: 102–110 (1961).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Van Harreveld, N. Ahmed, and D. J. Tanner, Sulfate concentrations in cerebrospinal fluid and serum of rabbits and cats, Am. J. Physiol. 210: 777–780 (1966).PubMedGoogle Scholar
  16. 16.
    R. W. P. Cutler, C. F. Barlow, and A. V. Lorenzo, The effect of brain-cerebrospinal fluid diffusion gradients on the determination of extracellular space in cat brain, J. Neuropathol. Exptl. Neurol. 26: 167 (1967).Google Scholar
  17. 17.
    A. B. Morrison, The distribution of intravenously-injected inulin in the fluids of the nervous system of the dog and rat, J. Clin. Invest. 38: 1769–1777 (1959).PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    D. P. Rall, W. W. Oppelt, and C. S. Patlak, Extracellular space of brain as determined by diffusion of inulin from the ventricular system, Life Sci. 2: 43–48 (1962).CrossRefGoogle Scholar
  19. 19.
    D. L. Woodward, D. J. Reed, and D. M. Woodbury, Extracellular space of rat cerebral cortex, Am. J. Physiol. 212: 367–370 (1967).PubMedGoogle Scholar
  20. 20.
    J. D. Fenstermacher and M. O. Bartlett, Sucrose space measurements in the rabbit central nervous system, Am. J. Physiol. 212: 1268–1272 (1967).PubMedGoogle Scholar
  21. 21.
    D. J. Reed and D. M. Woodbury, Kinetics of movement of iodide, sucrose, inulin and radio-iodinated albumin in central nervous system and cerebrospinal fluid of rat, J. Physiol. (London) 169: 816–850 (1963).Google Scholar
  22. 22.
    M. Pollay and H. Dayson, The passage of certain substances out of the cerebrospinal fluid, Brain 86: 137–150 (1963).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Streicher, D. P. Rall, and J. R. Gaskins, Distribution of thiocyanate between plasma and cerebrospinal fluid, Am. J. Physiol. 206: 251–254 (1961).Google Scholar
  24. 24.
    E. Streicher, Thiocyanate space of rat brain, Am. J. Physiol. 201: 334–336 (1961).Google Scholar
  25. 25.
    H. M. Pappius, Spaces in brain tissue in vitro and in vivo, Progr. Brain Res. 29: 455–460 (1968).CrossRefGoogle Scholar
  26. 26.
    H. M. Pappius, unpublished observation.Google Scholar
  27. 27.
    M. Pollay, Cerebrospinal fluid transport and the thiocyanate space of the brain, Am. J. Physiol. 210: 275–279 (1966).PubMedGoogle Scholar
  28. 28.
    L. Z. Bito, M. W. B. Bradbury, and H. Dayson, Factors affecting the distribution of iodide and bromide in the central nervous system, J. Physiol. (London) 185: 323–354 (1966).Google Scholar
  29. 29.
    G. B. Wallace and B. B. Brodie, The distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid, J. Pharmacol. Exptl. Therap. 65: 220–226 (1939).Google Scholar
  30. 30.
    D. M. Woodbury, Distribution of various substances in the brain as affected by alterations in active transport of cations and anions across the choroid plexus, Progr. Brain Res. 29: 297–313 (1968).CrossRefGoogle Scholar
  31. 31.
    A. Lajtha, The development of the blood-brain barrier, J. Neurochem. 1: 216–227 (1957).PubMedCrossRefGoogle Scholar
  32. 32.
    K. A. C. Elliott, Brain swelling and fluid and electrolyte distribution, in The Chemical Pathology of Brain (J. Folchi-Pi, ed.), pp. 277–293, Pergamon Press, New York (1961).Google Scholar
  33. 33.
    S. Varon and H. Mcllwain, Fluid content and compartments in isolated cerebral tissues, J. Neurochem. 8: 262–275 (1961).PubMedCrossRefGoogle Scholar
  34. 34.
    G. Levi, A. Cherayil, and A. Lajtha, Cerebral amino acid transport in vitro-II1, J. Neurochem. 12: 757–770 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    R. S. Bourke and D. B. Tower, Fluid compartmentation and electrolytes of cat cerebral cortex in vitro-I, J. Neurochem. 13: 1071–1097 (1966).PubMedCrossRefGoogle Scholar
  36. 36.
    J. B. Ranck, Analysis of specific impedance of rabbit cerebral cortex, Exptl. Neurol. 7: 153–174 (1963).CrossRefGoogle Scholar
  37. 37.
    A. H. Nevis and G. H. Collins, Electrical impedance and volume changes in brain during preparation for electron microscopy, Brain Res. 5: 57–85 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    L. Bakay and J. C. Lee, Cerebral Edema, Charles C. Thomas, Springfield, Illinois (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Hanna M. Pappius
    • 1
    • 2
  1. 1.The Donner Laboratory of Experimental NeurochemistryMontreal Neurological InstituteMontrealCanada
  2. 2.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations