Skip to main content
  • 460 Accesses

Abstract

The theory developed in the previous chapters shows that the study of the linearized Boltzmann equation is a worthwhile undertaking and that many of the features of its solutions can be retained by using model equations. We can say more, that practically all the features are retained by a properly chosen model. The advantages offered by the models consist essentially in simplifying both the analytical and numerical procedures for solving boundary value problems of special interest. In particular, the use of models is invaluable in those cases when the solution of the latter is explicit (in terms of quadratures or functions whose qualitative behavior can be studied by analytical means). Accordingly, we shall devote this chapter to the analytical manipulations which can be used to obtain interesting information from the model equations. The method used throughout is the method of separation of variables already sketched in Chapter VI, Section 7. The first step is to construct a complete set of separated-variable solutions (“elementary solutions”) and then represent the general solution as a superposition of the elementary solutions; the second step is to use the boundary and initial conditions to determine the coefficients of the superposition. While the first problem can be solved for the model equations discussed in Chapter IV, the second problem can be solved exactly in only a few cases. The method retains its usefulness, however, even when the second problem is not solvable, or is only approximately solvable, because it is capable of providing an analytical representation of the solution and hence a picture of its qualitative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Cercignani, J. Math. Anal. Appl. 10, 93 (1965).

    Article  Google Scholar 

  2. V. N. Faddeyeva and N. M. Terent’ev, Tables of the Values of the function Pergamon Press, London and New York (1961);

    MATH  Google Scholar 

  3. B. D. Fried and S. D. Conte, The Plasma Dispersion Function: The Hilbert Transform of the Gaussian, Academic Press, New York (1961).

    Google Scholar 

  4. N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen (1953).

    MATH  Google Scholar 

  5. S. Albertoni, C. Cercignani, and L. Gotusso, Phys. Fluids 6, 993 (1963).

    Article  Google Scholar 

  6. C. Cercignani, J. Math. Anal. Appl. 11, 93 (1965).

    Article  MathSciNet  Google Scholar 

  7. C. Cercignani, J. Math. Anal. Appl. 12, 234 (1965).

    Article  MathSciNet  Google Scholar 

  8. C. Cercignani, “Flows of Rarefied Gases Supported by Density and Temperature Gradients,” University of California Report No. AS-64-18 (1964).

    Google Scholar 

  9. C. Cercignani, in: Rarefied Gas Dynamics (J. A. Laurmann, ed.), Vol. II, p. 92, Academic Press, New York (1963),

    Google Scholar 

  10. M. Knudsen, Ann. Physik 28, 75 (1909).

    Article  MATH  Google Scholar 

  11. C. Cercignani and R. Tambi, Meccanica 2, 1 (1967),

    Article  Google Scholar 

  12. C. Cercignani and F. Sernagiotto, in: Rarefied Gas Dynamics (J. H. de Leeuw, ed.) Vol. 1, p. 332, Academic Press, New York (1965).

    Google Scholar 

  13. J. K. Buckner and J. H. Ferziger, Phys. Fluids 9, 2315 (1966),

    Article  MathSciNet  MATH  Google Scholar 

  14. H. S. Ostrowski and D. J. Kleitman, Nuovo Cimento XLIV B, 49 (1966);

    Article  Google Scholar 

  15. R. J. Mason, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 395, Academic Press, New York (1967);

    Google Scholar 

  16. H. Weitzner, in: Rarefied Gas Dynamics (J. H. de Leeuw, ed.), Vol. I, p. 1, Academic Press, New York (1965),

    Google Scholar 

  17. J. S. Cassell and M. M. Williams, Transport Theory and Statistical Physics 2, 81 (1972).

    Article  Google Scholar 

  18. C. Cercignani, Transport Theory and Statistical Physics 6, 29 (1977);

    Article  MathSciNet  MATH  Google Scholar 

  19. C. E. Siewert and C. T. Kelley, Z. Angew. Math. Phys. 31, 344 (1980);

    Article  MathSciNet  MATH  Google Scholar 

  20. J. S. Darrozès, La Recherche Aérospatiale 119, 13 (1967);

    Google Scholar 

  21. C. Cercignani and C. E. Siewert, Z. Angew. Math. Phys. 33, 297 (1982),

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Aoki and C. Cercignani, Z. Angew. Math. Phys. 35, 127 (1984);

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Aoki and C. Cercignani, Z. Angew. Math. Phys. 35, 345 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Cercignani and F. Sernagiotto, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 381, Academic Press, New York (1967).

    Google Scholar 

  25. C. Cercignani, P. Foresti, and F. Sernagiotto, Nuovo Cimento X, 57B, 297 (1968);

    Article  Google Scholar 

  26. M. A. Reynolds, J. J. Smolderen, and J. F. Wendt, in: Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. I, p. A21, DFVLR Press, Porz-Wahn (1974);

    Google Scholar 

  27. W. Rixen and F. Adomeit, in: Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. I, p. B18, DFVLR Press, Porz-Wahn (1974);

    Google Scholar 

  28. S. K. Loyalka, Phys. Fluids 18, 1666 (1975);

    Article  Google Scholar 

  29. C. Cercignani, in: Rarefied Gas Dynamics (J. L. Potter, ed.), Vol. II, p. 795, AIAA, New York (1977);

    Google Scholar 

  30. T. Abe and H. Oguchi, ISAS Report No. 553, 42(8), Tokyo (1977);

    Google Scholar 

  31. S. L. Gorelov and M. N. Kogan, Fluid Dynamics 3, 96 (1968);

    Article  Google Scholar 

  32. G. A. Bird, in: Rarefied Gas Dynamics (J. L. Potter, ed.), Vol. I, p. 323, AIAA, New York (1977);

    Google Scholar 

  33. C. Cercignani, in: Recent Developments in Theoretical and Experimental Fluid Mechanics (U. Müller, K. G. Roesner, and B. Schmidt, eds.), p. 187, Springer, Berlin (1979).

    Chapter  Google Scholar 

  34. I. N. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford (1962).

    MATH  Google Scholar 

  35. L. Sirovich and J. K. Thurber, J. Acoust. Soc. Am. 37, 329 (1965);

    Article  MathSciNet  Google Scholar 

  36. J. K. Thurber, in: The Boltzmann Equation (F. A. Grünbaum, ed.), p. 211, New York University Press, New York (1972);

    Google Scholar 

  37. C. L. Pekeris, Z. Alterman, L. Finkelstein, and K. Frankowski, Phys. Fluids 5, 1608 (1962);

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Maidanik, H. L. Fox, and M. Hekl, Phys. Fluids 8, 259 (1965);

    Article  Google Scholar 

  39. D. Kahn and D. Mintzer, Phys. Fluids 8, 1090 (1965);

    Article  MATH  Google Scholar 

  40. S. S. Abarbanel, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 369, Academic Press, New York (1967);

    Google Scholar 

  41. G. Sessler, J. Acoust. Soc. Am. 38, 974 (1965);

    Article  Google Scholar 

  42. L. H. Holway, Phys. Fluids 10, 35 (1967);

    Article  Google Scholar 

  43. L. Lees, SIAM J. Appl. Math. 13, 278 (1965);

    Article  MathSciNet  Google Scholar 

  44. K. Toba, Phys. Fluids 11, 2495 (1968);

    Article  MATH  Google Scholar 

  45. F. B. Hanson and T. F. Morse, Phys. Fluids 12, 1564 (1969);

    Article  MATH  Google Scholar 

  46. J. R. Thomas, Jr., and C. E. Siewert, Transport Theory Statist. Phys. 8, 219 (1979);

    Article  MATH  Google Scholar 

  47. C. E. Siewert and E. E. Burniston, J. Math. Phys. 18, 376 (1973).

    Article  MathSciNet  Google Scholar 

  48. M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966),

    Article  Google Scholar 

  49. S. Ranganathan and S. Yip, Phys. Fluids 9, 372 (1966);

    Article  Google Scholar 

  50. C. Truesdell, Journal Rat. Mech. Anal. 5, 55 (1956);

    MathSciNet  MATH  Google Scholar 

  51. V. S. Galkin, PMM 20, 445 (1956) (in Russian);

    MathSciNet  Google Scholar 

  52. V. S. Galkin, PMM 22, 532 (1958);

    MathSciNet  MATH  Google Scholar 

  53. V. S. Galkin, PMM 28, 226 (1964);

    MathSciNet  Google Scholar 

  54. V. S. Galkin, Fluid Dynamics 1, 29 (1966);

    Article  Google Scholar 

  55. R. Zwanzig, J. Chem. Phys. 71, 4416 (1979);

    Article  Google Scholar 

  56. J. Gomez Ordonez, J. J. Brey, and A. Santos, Phys. Rev. A39, 3038 (1989);

    Article  Google Scholar 

  57. H. Grad, Commun. Pure Appl. Math. 2, 331 (1949);

    Article  MathSciNet  MATH  Google Scholar 

  58. E. Ikenberry and C. Truesdell, J. Rat. Mech. Anal. 5, 1 (1956);

    MathSciNet  MATH  Google Scholar 

  59. C. Truesdell, J. Rat. Mech. Anal. 5, 55 (1956);

    MathSciNet  MATH  Google Scholar 

  60. M. Krook and T. T. Wu, Phys. Rev. Lett. 36, 1107 (1976);

    Article  Google Scholar 

  61. M. Krook and T. T. Wu, Phys. Fluids 20, 1589 (1977);

    Article  MATH  Google Scholar 

  62. A. V. Bobylev, Sov. Phys. Dokl. 20, 820 and 822 (1976) and 21, 632 (1977);

    Google Scholar 

  63. R. Krupp, Masters Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1967);

    Google Scholar 

  64. C. Cercignani, in: Rarefied Gas Dynamics (R. Campargue, ed.), Vol. I, p. 141, CEA, Paris (1981);

    Google Scholar 

  65. M. H. Ernst, Phys. Rep. 78, 1 (1981);

    Article  MathSciNet  Google Scholar 

  66. M. H. Ernst, in: Nonequilibrium Phenomena I: The Boltzmann Equation (J. L. Lebowitz and E. W. Montroll, eds.), p. 51, North-Holland, Amsterdam (1983);

    Google Scholar 

  67. A. A. Nikol’skii, Soviet Physics—Doklady 8, 633 (1964);

    MathSciNet  Google Scholar 

  68. A. A. Nikol’skii, Soviet Physics—Doklady 8, 639 (1964);

    MathSciNet  Google Scholar 

  69. R. G. Muncaster, Arch. Rat. Mech. Anal. 70, 79 (1979);

    Article  MathSciNet  MATH  Google Scholar 

  70. B. Riemann, Collected Works (H. Weber, ed.), p. 88, Dover, New York (1953);

    Google Scholar 

  71. G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Massachusetts (1957).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C. (1990). Analytical Methods Of Solution. In: Mathematical Methods in Kinetic Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7291-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7291-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7293-4

  • Online ISBN: 978-1-4899-7291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics