Skip to main content

Cell Positioning

  • Chapter

Part of the book series: Receptors and Recognition ((RERE,volume 4))

Abstract

The term cell positioning refers to the processes which determine the placing of one cell type with respect to another. The term ‘cell recognition’ is often used loosely for these phenomena but it is rather objectionable partly because of its anthropomorphism and also because it refers to other phenomena as well, such as the capture of degraded serum proteins by certain liver cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonelli, P.L., Rogers, T.D. and Willard, M.A. (1973), Geometry and the exchange principle in cell aggregation kinetics. J. theor. Biol., 41, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Balsamo, J. and Lilien, J. (1974a), Embryonic cell aggregation: kinetics and specificity of binding of enhancing factors. Proc. natn. Acad. Sci. U.S.A., 71, 727–731.

    Article  CAS  Google Scholar 

  • Balsamo, J. and Lilien, J. (1974b), Functional identification of three components which mediate tissue-type specific embryonic cell adhesion. Nature., 251, 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Balsamo, J. and Lilien, J. (1975), The binding of tissue-specific adhesive molecules to the cell surface. A molecular basis for specificity. Biochemistry., 14, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Bell, E.B. and Shand, F.L. (1975), Changes in lymphocyte recirculation and liberation of the adoptive memory response from cellular regulation in the iradiated recipients. Eur. J. Immunol., 5, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, M.L. (1968), A test of the capacity of chick embryo cells to home after vascular dissemination. J. exp. Zool., 167, 1–20.

    Article  Google Scholar 

  • Burdick, M.L. (1970), Cell sorting out according to species in aggregates containing mouse and chick embryonic limb mesoblast cells. J. exp. Zool., 175, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, M.L. and Steinberg, S. (1969), Embryonic cell adhesiveness: Do species differences exist among warm-blooded vertebrates. Proc. natn. Acad. Sci. U.S.A., 63, 1169–1173.

    Article  CAS  Google Scholar 

  • Crandall, M.A. and Brock, T.D. (1968), Molecular aspects of specific cell contact. Science., 161, 473–475.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. (1962), Cell contact and adhesion. Biol. Rev., 37, 82–129.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. (1969), The measurement of cell adhesiveness by an absolute method. J. Embryol. exp. Morph., 22, 305–325.

    PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. (1970a), Problems and some solutions in the study of cellular aggregation. Symp. Zool. Soc. Lond., 25, 335–352.

    Google Scholar 

  • Curtis, A.S.G. (1970b), Re-examination of a supposed case of specific cell adhesion. Nature., 226, 260–261.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. (1970c), On the occurrence of specific adhesion between cells. J. Embryol. exp. Morph., 23, 235–272.

    Google Scholar 

  • Curtis, A.S.G. (1972), Adhesive interactions between organisms. Symposia Br. Soc. Parasitol., 10, 10–21.

    Google Scholar 

  • Curtis, A.S.G. (1973), Cell adhesion. Prog. Biophys. Mol. Biol., 27, 315–386.

    Article  Google Scholar 

  • Curtis, A.S.G. (1974), The specific control of cell positioning. Arch. Biol., 85, 105–121.

    CAS  Google Scholar 

  • Curtis, A.S.G. (1976), Le positionnement cellulaire et la morphogenese. Bull. Soc, Zool. France., 101, 1–9.

    Google Scholar 

  • Curtis, A.S.G. (1978), Individuality and graft rejection in sponges OR A cellular basis for individuality in sponges. Biol. and systematics of colonial organisms. (Rosen, B. ed.), in press. Systematics Assoc.

    Google Scholar 

  • Curtis, A.S.G. and De Sousa, M.A.B. (1973), Factors influencing adhesion of lymphoid cells. Nature New Biol., 244, 45–47.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. and De Sousa, M.A.B. (1975), Lymphocyte interactions and positioning. 1. Adhesive interactions. Cellul Immun., 19, 282–297.

    Article  CAS  Google Scholar 

  • Curtis, A.S.G. and Greaves, M.F. (1965), The inhibition of cell aggregation by a pure serum protein. J. Embryol exp. Morph. 13, 309–326.

    PubMed  CAS  Google Scholar 

  • Curtis, A.S.G. and Hocking, L.M. (1970), Collision efficiency of equal spherical particles in a shear flow. Trans. Faraday Soc. 66, 1381–1390.

    Article  CAS  Google Scholar 

  • Curtis, A.S.G. and Van De Vyver, G. (1971), The control of cell adhesion in a morphogenetic system. J. Embryol. exp. Morph. 26, 295–312.

    PubMed  CAS  Google Scholar 

  • De Sousa, M.A.B. and Haston, W.A. (1976), Modulation of B-cell interactions by T cells. Nature., 260, 429–430.

    Article  PubMed  Google Scholar 

  • Dubois, R. and Croisille, Y. (1970), Germ-cell line and sexual differentiation in birds. Phil. Trans. Roy. Soc. Lond. ser. B., 259, 73–89.

    Article  CAS  Google Scholar 

  • Edelstein, B.B. (1970), Cell specific diffusion model of morphogenesis. J. theor. Biol., 30, 515–532.

    Article  Google Scholar 

  • Elton, R.A. and Tickle, C.A. (1971), The analysis of spatial distributions in mixed cell populations: a statistical method for detecting sorting out. J. Embryol exp. Morph., 26, 135–156.

    PubMed  CAS  Google Scholar 

  • Ford, W.L. and Simmonds, S.J. (1972), The tempo of lymphocyte recirculation from blood to lymph in the rat. Cell Tissue Kinet., 5, 175–189.

    PubMed  CAS  Google Scholar 

  • Ford, W.L., Sedgley, M., Sparshott, S.M. and Smith, M.E. (1976), The migration of lymphocytes across specialized vascular endothelium. II. The contrasting consequences of treating lymphocytes with trypsin and neuraminidase. Cell Tissue Kinet., 9, 351–361.

    PubMed  CAS  Google Scholar 

  • Gerisch, G. (1968), Cell aggregation and differentiation in Dictyostelium. Current topics in developmental biology., 3, 157–197.

    PubMed  CAS  Google Scholar 

  • Goel, N., Campbell, R.D., Gordon, R., Rosen, R., Martinez, H. and Yeas, M. (1970), Self-sorting of isotropic cells. J. theor. Biol., 28, 23–68.

    Google Scholar 

  • Goel, N.S. and Leith, A.G. (1970), Self-sorting of anisotropic cells. J. theor. Biol., 28, 469–482.

    Article  PubMed  CAS  Google Scholar 

  • Greaves, M.F., Owen, J.J.T. and Raff, M.C. (1974), Tand B Lymphocytes: Origins, Properties and Roles in Immune Responses. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Harris, A.K. (1976), Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. theor. Biol., 61, 267–285.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, T. (1963), Chemical dissolution and in vitro reconstruction of sponge cell adhesions. 1. Isolation and functional demonstration of the components involved. Dev. Biol., 8, 21–41.

    Google Scholar 

  • Katz, D.H. and Armerding, D. (1975), Evidence for the control of lymphocyte interactions by gene products of the I region of the H-2 complex. In: Immune Recognition. (Rosenthal, A. S., ed.), Academic Press, New York and London, pp. 727–751.

    Google Scholar 

  • Kondo, K. (1974), Demonstration of a reaggregation inhibitor in sea urchin embryos. Exp.Res., 86, 178–181.

    Article  Google Scholar 

  • Kondo, K. and Sakai, H. (1971), Demonstration and preliminary characterization of reaggregation-promoting substances from embryonic sea urchin cells. Dev. Growth and Differentiation., 13, 1–14.

    Article  CAS  Google Scholar 

  • Lilien, J.E. (1968), Specific enhancement of cell aggregation in vitro Dev. Biol., 17, 657–678.

    Article  PubMed  CAS  Google Scholar 

  • Lilien, J.E. (1969), Toward a molecular explanation for specific cell adhesion. Current topics in Developmental Biol., 4, 169–193.

    Article  CAS  Google Scholar 

  • Lilien, J.E. and Moscona, A.A. (1967), Cell aggregation: its enhancement by a supernatant from cultures of homologous cells. Science., 175, 70–72.

    Article  Google Scholar 

  • McClay, D.R. (1971), An autoradiographic analysis of the species specificity during sponge cell reaggregation. Biol Bull., 141, 319–330.

    Article  Google Scholar 

  • McClay, D.R. (1974), Cell aggregation properties of cell surface factors from five species of sponge. J. exp. Zool., 188, 89–102.

    Article  PubMed  CAS  Google Scholar 

  • McClay, D.R. and Hausman, R.E. (1976), Specificity of cell adhesion: differences between normal and hybrid sea urchin cells. Dev. Biol., 47, 454–460.

    Article  Google Scholar 

  • McClay, D.R. and Moscona, A.A. (1974), Purification of the specific cell-aggregating factor from embryonic neural retina cells. Exp. Cell Res., 87, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, H.O. (1975), Genetic control of immunocompetent cell interactions. In: Immune Recognition, (Rosenthal, A.S. ed.), Academic Press, New York and London, pp. 621–626.

    Google Scholar 

  • McGuire, E.J. and Burdick, C.L. (1976), Intercellular adhesive selectivity. 1. An improved assay for the measurement of embryonic chick intercellular adhesion (liver and other tissues). J. Cell Biol., 68, 80–89.

    Article  PubMed  CAS  Google Scholar 

  • Medawar, P.B. (1944), The behaviour and fate of skin autografts and skin homografts in rabbits. J. Anat., 78, 176–199.

    PubMed  CAS  Google Scholar 

  • Meyer, D.B. (1964), The migration of primordial germ cells in the chick embryo. Dev. Biol., 10, 154–190.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A.A. (1962), Analysis of cell recombinations in experimental synthesis of tissues in vitro. J. Cell. comp. Physiol., Suppl., 60, 65–80.

    Article  Google Scholar 

  • Moscona, A.A. (1968), Aggregation of sponge cells: cell-linking macromolecules and their role in the formation of multicellular systems. In vitro., 3, 13–21.

    Article  Google Scholar 

  • Muller, W.E.G. and Zahn, R.K. (1973), Purification and characterization of a species-specific aggregation factor in sponges. Exp. Cell Res., 80, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Muller, W.E.G., Muller, I., Kurelec, B. and Zahn, R.K. (1976), Species-specific aggregation factor in sponges. IV. Inactivation of the aggregation factor by mucoid cells from another species. Exp. Cell Res., 98, 32–40.

    Google Scholar 

  • Muller, W.E.G., Muller, I., Zahn, R.K. and Kurelec, B. (1976), Species-specific aggregation factor in sponges. VI. Aggregation receptor from the cell surface. J. Cell Sci., 21, 227–241.

    PubMed  CAS  Google Scholar 

  • Neuwenhuis, C.P. and Ford, W.L. (1976), Comparative migration of B-and T-lymphocytes in the rat spleen and lymph nodes. Cell. Immunol., 23, 254–267.

    Article  Google Scholar 

  • Pessac, B. and Defendi, V. (1972), Evidence for distinct aggregation factors and receptors in cells. Nature New Biol., 238, 13–15.

    Article  PubMed  CAS  Google Scholar 

  • Pielou, E.C. (1960), A single mechanism to account for regular, random and aggregated populations. J. Ecol., 48, 575–584.

    Article  Google Scholar 

  • Raven, C.P. (1967), The distribution of special cytoplasmic differentiations of the egg during early cleavage in Limnaea stagnalis. Dev. Biol., 16, 407–437.

    Article  PubMed  CAS  Google Scholar 

  • Roach, S.A. (1968), The Theory of Random Clumping. Methuen, London.

    Google Scholar 

  • Roseman, S. (1970), The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids., 5, 270–297.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, S.D., Simpson, D.L., Rose, J.E. and Barondes, S.H. (1974), Carbohydrate-binding protein from Polysphondylium pallidum implicated in intercellular adhesion. Nature 252, 128, 149–151.

    Google Scholar 

  • Roth, S. (1968), Studies on intercellular adhesive selectivity. Dev. Biol., 18, 602–631.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S., McGuire, E.J. and Roseman, S. (1971), Evidence for cell-surface glycosyltransferases. Their potential role in cellular recognition J. Cell Biol., 51, 536–547.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S.A. and Weston, J.A. (1967), The measurement of intercellular adhesion. Proc. natn. Acad. Sci. U.S.A., 58, 974–980.

    Article  CAS  Google Scholar 

  • Rutishauser, U., Thiery, J.P., Brackenbury, R., Seal, B.A. and Edelman, G. (1976), Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc. natn. Acad. Sci. U.S.A., 73, 577–581.

    Article  CAS  Google Scholar 

  • Sedgley, M. and Ford, W.L. (1976), The migration of lymphocytes across specialized vascular endothelium. 1. The entry of lymphocytes into the isolated mesenteric lymph-node of the rat. Cell Tissue Kin., 9, 231–243.

    CAS  Google Scholar 

  • Simon, D. (1957), La localisation primaire des cellules germinales dans l’embryon de poulet; preuves expérimentales. C.R. Soc. Biol. 151, 1010–1012.

    CAS  Google Scholar 

  • Snell, W.J. (1976a), Mating in Chlamydomonas: a system for the study of specific cell adhesion. 1. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion. J. Cell Biol., 68, 48–69.

    Article  PubMed  CAS  Google Scholar 

  • Snell, W.J. (1976b), Mating in Chlamydomonas: a system for the study of specific cell adhesion. II. A radioactive flagella-binding assay for quantitation of adhesion. J. Cell Biol., 68, 70–79.

    Article  PubMed  CAS  Google Scholar 

  • Sprent, J. (1973), Circulating T and B lymphocytes of the mouse. 1. Migratory properties. Cell Immunol., 7, 10–39.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S. (1962a), On the mechanism of tissue reconstruction by dissociated cells. 1. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. natn. Acad. Sci. U.S.A., 48, 1577–1582.

    Article  CAS  Google Scholar 

  • Steinberg, M.S. (1962b), Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events. Science., 137, 762–763.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S. (1962c), On the mechanism of tissue reconstruction by dissociated cells. III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. natn. Acad. Sci. U.S.A., 48, 1769–1776.

    Article  CAS  Google Scholar 

  • Steinberg, M.S. (1963), Reconstruction of tissues by dissociated cells. Science., 141, 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S. (1970), Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. exp. Zool., 173, 395–434.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S. (1975), Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. J. theor. Biol., 55, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Swift, D.L. and Friedlander, S.K. (1964), The coagulation of hydrosols by Brownian motion and laminar shear flow. J. Colloid Sci., 19, 621–647.

    Article  Google Scholar 

  • Takahashi, K. and Okada, T.S. (1971), Separation of two factors affecting the aggregation kinetics from the conditioned medium. Dev. Growth and Differentiation., 13, 15–24.

    Article  CAS  Google Scholar 

  • Townes, P.L. and Holtfreter, J. (1955), Directed movements and selective adhesion of embryonic amphibian cells. J. exp. Zool., 128, 53–120.

    Article  Google Scholar 

  • Turner, R.S. and Burger, M.M. (1973), Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells. Nature., 244, 509–510.

    Article  PubMed  CAS  Google Scholar 

  • Tuler, A. (1946), An auto-antibody concept of cell structure, growth and differentiation. Growth., 10, 7–19.

    Google Scholar 

  • Van De Vyver, G. (1970), La non confluence intraspecifique chez les spongiaires et la notion d’individu. Annales Embryol. Morphog., 3, 251–262.

    Google Scholar 

  • Van De Vyver, G. (1975), Phenomena of cellular recognition in sponges. Current Topics in Dev. Biol., 10, 123–140.

    Article  Google Scholar 

  • Walther, B.T., Ohman, R. and Roseman, S. (1973), A quantitative assay for intercellular adhesion. Proc. natn. Acad. Sci. U.S.A., 70, 1569–1573.

    Article  CAS  Google Scholar 

  • Walther, B. Rausch, B. and Roseman, S. (1976), Sequential reactions in intercellular adhesion. J. Cell Biol., 70, 70a.

    Google Scholar 

  • Weinbaum, G. and Burger, M.M. (1973), Two component system for surface-guided reassociation of animal cells. Nature., 244, 510–512.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P. (1947), The problem of specificity in growth and development. Yale J. Biol. and Med., 19, 235–278.

    CAS  Google Scholar 

  • Willis, R.A. (1952), The Spread of Tumours in the Human Body. Butterworth, London.

    Google Scholar 

  • Wolpert, L. (1969), Positional information and the spatial pattern of cellular differentiation. J. theor. Biol., 25, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S. (1964), Experimental studies of the intravascular dissemination of ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bull Swiss. Acad. Med. Sci., 20, 92–121.

    Google Scholar 

  • Wourms, J.P. (1972), The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. J. exp. Zool., 182, 169–200.

    Article  PubMed  CAS  Google Scholar 

  • Zeidman, I. (1961), The fate of circulating tumor cells. I. Passage of cells through capillaries. Cancer Res., 21, 38–39.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Curtis, A.S.G. (1978). Cell Positioning. In: Garrod, D.R. (eds) Specificity of Embryological Interactions. Receptors and Recognition, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7124-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7124-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-14420-2

  • Online ISBN: 978-1-4899-7124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics