Basic Compression Techniques

  • Arun N. Netravali
  • Barry G. Haskell
Part of the Applications of Communications Theory book series (ACTH)

Abstract

We have so far described the nature and properties of picture signals such as the television signal and the facsimile signal. In particular, we considered statistical properties of pictures and the properties of the human viewer that are relevant to the coding problem. In this chapter we will describe many of the basic coding approaches that have been successfully used for digital picture communication. Emphasis will be on general principles, and how they are related or derived from the picture statistics and psychophysics of vision. We start with a classification of coding schemes and then describe them in some detail outlining procedures for optimizing their parameters.

Keywords

Entropy Compaction Expense Sine Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1.1
    B. M. Oliver, J. R. Pierce and C. E. Shannon, “The Philosophy of PCM”, Proceedings of IRE, Vol. 36, Oct. 1948, pp. 1324–1331.CrossRefGoogle Scholar
  2. 5.1.2
    W. M. Goodall, “Television by Pulse Code Modulation”, Bell System Technical Journal, Vol. 30, Jan. 1951, pp. 33–49.CrossRefGoogle Scholar
  3. 5.1.3
    L. G. Roberts, “Picture Coding Using Pseudo-Random Noise”, IRE Trans. on Information Theory, Vol. IT-8, February 1962, pp. 145–154.CrossRefGoogle Scholar
  4. 5.1.4
    A. K. Bhushan, “Efficient Transmission and Coding of Color Components”, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1977.Google Scholar
  5. 5.1.5
    W. Frei, P. A. Jaeger and P. A. Probst, “Quantization of Pictorial Color Information”, Nachrichtentech Z, Vol 61, 1972, pp. 401–404.Google Scholar
  6. 5.1.6
    B. Marti, “Preliminary Processing of Color Images”, CCETT ATA/T/3/73, September 5, 1973.Google Scholar
  7. 5.1.7
    L. Stenger, “Quantization of TV Chrominance Signals Considering the Visibility of Small Color Differences”, IEEE Trans. on Communications, Vol. COM-25, No. 11, November 1977.Google Scholar
  8. 5.2.1
    C. C. Cutler, “Differential Quantization of Communication Signals”, U.S. Patent 2 605 361, July 1952.Google Scholar
  9. 5.2.2
    F. de Jager, “Delta Modulation, A Method of PCM Transmission using a 7-Unit Code”, Philips Research Reports, Dec. 1952, pp. 442–466.Google Scholar
  10. 5.2.3
    C. W. Harrison, “Experiments with Linear Prediction in Television”, Bell System Technical journal, Vol. 31, July 1952, pp. 764–783.CrossRefGoogle Scholar
  11. 5.2.4
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.MATHGoogle Scholar
  12. 5.2.5
    A. Habibi, “Comparison of Nth order DPCM encoder with Linear Transformations and Block Quantization Techniques”, IEEE Trans. on Communication Technology, Vol. COM-19, Dec. 1971, pp. 948–956.CrossRefGoogle Scholar
  13. 5.2.6
    H. G. Musmann, “Predictive Coding” Chapter in the book Image Transmission Techniques, edited by W. K. Pratt, Academic Press 1979.Google Scholar
  14. 5.2.7
    R. E. Graham, “Predictive Quantizing of Television Signals”, IRE Wescon Convention Record, Vol. 2, pt 4, 1958, pp. 147–157.Google Scholar
  15. 5.2.8
    B. G. Haskell, “Entropy Measurements for Nonadaptive and Adaptive, Frame-to-Frame, Linear Predictive Coding of Video Telephone Signals”, Bell System Technical Journal, Vol. 54, No. 6, August 1975, pp. 1155–1174.CrossRefGoogle Scholar
  16. 5.2.9
    H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in Picture Coding”, Proceedings of IEEE, April 1985.Google Scholar
  17. 5.2.10
    J. O. Limb, and H. A. Murphy, “Measuring the Speed of Moving Objects from Television Signals”, IEEE Trans. on Comm., April 1975.Google Scholar
  18. 5.2.11
    A. N. Netravali and J. D. Robbins, “Motion-Compensated Television Coding: Part I”, Bell System Technical Journal, Vol. 58, No. 33, March 1979, pp. 631–669.ADSCrossRefMATHGoogle Scholar
  19. 5.2.12
    A. N. Netravali and J. D. Robbins, “Motion Compensated Coding: Some New Results”, Bell System Technical Journal, Nov. 1980.Google Scholar
  20. 5.2.13
    J. A. Stuller, A. N. Netravali and J. D. Robbins, “Interframe Television Coding Using Gain and Displacement Compensation”, Bell System Technical journal, Sept. 1980.Google Scholar
  21. 5.2.14
    K. A. Prabhu and A. N. Netravali, “Motion Compensated Components Color Coding,” IEEE Trans. Comm., Dec. 1982.Google Scholar
  22. 5.2.15
    K. A. Prabhu and A. N. Netravali, “Motion Compensated Composite Color Coding”, IEEE Trans. Comm., Feb. 1983.Google Scholar
  23. 5.2.16
    D. J. Connor, R. C. Brainard and J. O. Limb, “Intraframe Coding for Picture Transmission”, IEEE Proceedings, July 1972.Google Scholar
  24. 5.2.17
    R. Jung and R. Lippman, “Error Response of DPCM Decoders”, Sonderdruck aus Nachrichtentechnische Zeitschrift, Bd. 28, 1974, pp. 431–436.ADSGoogle Scholar
  25. 5.2.18
    J. Max, “Quantizing for Minimum Distortion”, IEEE Trans. on Information Theory, Vol. IT-6, March 1960, pp. 7–12. Also, S. P. Lloyd, “Least Squares Quantization in PCM”, IEEE Trans on Information Theory, March 1982, pp. 129–136.MathSciNetCrossRefGoogle Scholar
  26. 5.2.19
    D. K. Sharma and A. N. Netravali, “Design of Quantizers for DPCM Coding of Picture Signals”, IEEE Trans. on Communication, Vol. COM-25, Nov. 1977, pp. 1267–1274.CrossRefGoogle Scholar
  27. 5.2.20
    A. N. Netravali, “On Quantizers for DPCM Coding of Picture Signals”, IEEE Trans. on Information Theory, Vol. IT-23, No. 3, May 1977, pp. 360–370.CrossRefGoogle Scholar
  28. 5.2.21
    A. N. Netravali and C. B. Rubinstein, “Quantization of Color Signals”, Proceedings of IEEE, Vol. 65, No. 3, August 1977, pp. 1177–1187.CrossRefGoogle Scholar
  29. 5.2.22
    A. N. Netravali and B. Prasada, “Adaptive Quantization of Picture Signals Using Spatial Masking”, Proceedings of IEEE, Vol. 65, April 1977, pp. 536–548.CrossRefGoogle Scholar
  30. 5.2.23
    P. Pirsch, “Block Coding of Color Video Signals”, in Proceedings of National Telecommunications Conference, 1977, pp. 10.5.1–10.5.5.Google Scholar
  31. 5.3.1
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1984.Google Scholar
  32. 5.3.2
    Programs for Digital Signal Processing, Edited by IEEE Acoustics, Speech and Signal Processing Society, IEEE Press, New York, 1979.Google Scholar
  33. 5.3.3
    H. F. Silverman, “An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA),” IEEE Trans. on Acoustics, Speech and Signal Processing, v. ASSP-25, No. 2, April 1977, pp. 152–165.ADSCrossRefMATHGoogle Scholar
  34. 5.3.4
    W. K. Pratt, J. Kane and H. C. Andrews, “Hadmard Transform Image Coding,” Proc. IEEE, v. 57, No. 1, Jan. 1969, pp. 58–68.CrossRefGoogle Scholar
  35. 5.3.5
    R. D. Brown, “A Recursive Algorithm for Sequency Ordered Fast Walsh Transforms,” IEEE Trans. Computers, v. C-26, No. 8, Aug. 1977, pp. 819–822.ADSCrossRefMATHGoogle Scholar
  36. 5.3.6
    N. Ahmed and K. R. Rao, Orthogonal Transform for Digital Signal Processing, Springer-Verlag, New York, 1975.CrossRefGoogle Scholar
  37. 5.3.7
    J. Makhoul, “A Fast Cosine Transform in One and Two Dimensions,” IEEE Trans. Acoustics, Speech and Signal Processing, v. ASSP-28, No. 1, Feb. 1980, pp. 27–34.MathSciNetCrossRefMATHGoogle Scholar
  38. 5.3.7a
    C. Loeffler, A. Ligtenberg and G. S. Moschytz, “Practical fast ID DCT algorithm with 11 multiplications,” Proceedings IEEE ICASSP-89, v.2, pp. 988–991, Feb. 1989.Google Scholar
  39. 5.3.8
    B. Fino, “An Experimental Study of Image Coding Utilizing the Haar Transform and the Hadamard Complex Transform,” Ann. Telecommunications, v. 27 (5–6) pp. 185–208, 1972 (in French).MATHGoogle Scholar
  40. 5.3.9
    W. K. Pratt, W. Chen and L. R. Welch, “Slant Transform Image Coding,” IEEE Trans. Communications, V. COM-22, pp. 1075–1093, Aug. 1974.CrossRefGoogle Scholar
  41. 5.3.10
    A. K. Jain, “Image Data Compression: A Review,” Proc. IEEE, v. 69, No. 3, pp. 349–389, March 1981.ADSCrossRefGoogle Scholar
  42. 5.3.11
    H. C. Andrews and C. L. Patterson, “Outer Product Expansions and Their Uses in Digital Image Processing,” IEEE Trans. Computers, v. C-25, No. 2 pp. 140–148, Feb. 1976.CrossRefMATHGoogle Scholar
  43. 5.3.12
    F. W. Mounts, A. N. Netravali and B. Prasada, “Design of Quantizers for Real-Time Hadamard Transform Coding of Pictures,” Bell Sys. Tech. J., v. 56, No. 1, January 1977, pp. 21–48.CrossRefGoogle Scholar
  44. 5.3.13
    A. K. Jain and S. H. Wang, “Stochastic Image Models and Hybrid Coding,” Final Report Contract No. N00953–77-C-003 MJE, Dept. of Elec. Engin, State U. of New York at Buffalo, October 1977.Google Scholar
  45. 5.3.14
    J. Huang and P. Schultheiss, “Block Quantization of Correlated Gaussian Random Variables,” IEEE Trans. Communications, COM-11, 1963, pp. 286–296.CrossRefGoogle Scholar
  46. 5.3.15
    W. H. Chen and C. N. Smith, “Adaptive Coding of Monochrome and Color Images,” IEEE Trans. Communications, v. COM-25, No. 11, November 1977, pp. 1285–1292.CrossRefGoogle Scholar
  47. 5.3.16
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, John Wiley & Sons, Inc., New York, 1965.Google Scholar
  48. 5.3.17
    J. O. Limb, C.B. Rubinstein and J. E. Thompson, “Digital Coding of Color Video Signals — A Review,” IEEE Trans. Communications, v COM-25, No. 11, November 1977, pp. 1349–1385.ADSCrossRefMATHGoogle Scholar
  49. 5.3.18
    T. R. Natarajan and N. Ahmed, “On Interframe Transform Coding,” IEEE Trans. Communications, v. COM-25, No. 11, November 1977, pp. 1323–1329.CrossRefGoogle Scholar
  50. 5.3.19
    J. R. Jain and A. K. Jain, “Interframe Adaptive Data Compression Techniques for Images,” Signal and Image Processing Laboratory—Dept. of Elec. and Computer Engin., University of Calif., Davis, CA., AD-A078841.Google Scholar
  51. 5.3.20
    S. C. Knauer, “Real-Time Video Compression Algorithm for Hadamard Transform Processing,” IEEE Trans. Electromagnetic Compatibility, v. EMC-18, No. 1, February 1976, pp. 28–36.MathSciNetADSCrossRefGoogle Scholar
  52. 5.3.21
    A. G. Tescher, “Transform Image Coding,” Chapter 4 of Image Transmission Techniques, W. K. Pratt ed., Academic Press, New York, 1979.Google Scholar
  53. 5.4.1
    A. Habibi, “Hybrid Coding of Pictorial Data,” IEEE Trans. Communications, v. COM-22, No. 5, May 1974, pp. 614–624.CrossRefGoogle Scholar
  54. 5.4.2
    J. A. Roese, “Hybrid Transform/Predictive Image Coding,” Chapter 5 of Image Transmission Techniques, W. K. Pratt ed., Academic Press, New York, 1979.Google Scholar
  55. 5.4.3
    R. J. Clarke, “Hybrid Intraframe Transform Coding of Image Data,” IEE Proc, v. 131 part F, No. 1, Feb. 1984, pp. 2–6.ADSGoogle Scholar
  56. 5.5.1
    A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.CrossRefMATHGoogle Scholar
  57. 5.5.2
    Y. Linde, A. Buzo and R. Gray, “An Algorithm for Vector Quantizer Designs,” IEEE Trans Commun., COM-28, Jan. 1980, pp. 84–95.CrossRefGoogle Scholar
  58. 5.5.3
    W. H. Equitz, “Fast Algorithms for Vector Quantization Picture Coding,” M. S. Thesis, MIT, June 1984. Also see “Some Methods for Classification and Analysis of Multivariate Observations”, MacQueen, Proc. 5th Berkeley Symp. on Math, Statistics and Probability, v. 1, pp. 281–296, 1967.Google Scholar
  59. 5.5.4
    A. Gersho and B. Ramamurthi, “Image Coding using Vector Quantization,” Proc.of Int. Conf. ASSP, Paris, 1982, pp. 428–431.Google Scholar
  60. 5.5.5
    D. J. Healy and D. R. Mitchell, “Digital Video Bandwidth Compression Using Block Truncation Coding”, IEEE Trans. Commun., COM-29, Dec. 1981, pp. 1809–1823.CrossRefGoogle Scholar
  61. 5.6.1
    P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. on Communications, COM-31, April 1983, pp. 532–540.CrossRefGoogle Scholar
  62. 5.6.2
    J. W. Woods and Sean D. O’Neil, “Subband Coding of Images,” IEEE Trans. on Acoustics, Speech and Signal Proc., ASSP-34, Oct. 1986, pp. 1278–1288.CrossRefGoogle Scholar
  63. 5.7.1
    R. Hunter and A. H. Robinson, “International Digital Facsimile Coding Standards,” Proceedings of IEEE, July 1980.Google Scholar
  64. 5.7.2
    O. Johnsen, J. Segen and G. L. Cash, “Coding of Two-Level Pictures of Pattern Matching and Substitution,” Bell System Technical J., Vol. 62, Oct. 1983, pp. 2513–2545.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Arun N. Netravali
    • 1
  • Barry G. Haskell
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations