Skip to main content

Broad-Band P-Wave Signals and Spectra from Digital Stations

  • Chapter
Book cover Digital Seismology and Fine Modeling of the Lithosphere

Abstract

The first determination of the seismic moment was made by Aki (1966) for the Niigata earthquake of 1964. Since then, it has become the single most important source parameter used to characterize the strength of earthquake sources. Several methods are currently used in order to compute seismic moments from long and short period P- and S-waves (see, for example, Kikuchi and Kanamori, 1982; Ruff and Kanamori, 1983; Houston and Kanamori, 1986) and from long period surface waves (see, for example, Dziewonski et al., 1982; Monfret and Romanowicz, 1986). The observed high frequency waveforms from large earthquakes are very complex and it is sometimes difficult to determine the seismic moment from time domain studies. Furthermore, because of the limited bandpass of most of the standard instruments it is easy to miss low frequency components that would contribute significantly to the moment of the earthquake. For this reason, the spectral method in which the observed spectra are corrected for instrument response is probably a more reliable method for estimating seismic moments. Of course, if the instrument response of the seismograph does not include the corner frequency in its bandpass the recovered moment will be wrong. This difficulty has been invoked several times in order to explain differences between seismic moments determined from surface wave analyses, and from body wave studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., 1966, Generation and propagation of G waves from Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, from the G wave spectrum, Bull. Earthquake Res. Ins. Univ., Tokyo, 44:73–88.

    Google Scholar 

  • Aki, K., 1983, “Strong-motion Seismology”, Proceedings of the International School of Physics, Enrico Fermi, Earthquakes Observation, Theory and Interpretation, H. Kanamori and E. Boschi, eds.

    Google Scholar 

  • Barazangi, M., and Isacks, B., 1976, Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, Geology, 4: 686–692.

    Article  ADS  Google Scholar 

  • Bezzeghoud, M., Deschamps, A., and Madariaga, R., 1986, Broad-band modeling of the Corinth Greece earthquakes of February and March 1981, Anns. Geophys., B3:295–304.

    Google Scholar 

  • Bezzeghoud, M., 1987, Inversion et analyse spectrale des ondes P. Potentialité des données numériques large bande. Applications à des séismes Méditerranéens et Chiliens, Thèse de doctorat, Université Paris VII.

    Google Scholar 

  • Brune, J., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 5:4997–5009.

    Article  ADS  Google Scholar 

  • Choy, G. L., and Boatwright, J., 1981, The rupture characteristics of two deep earthquakes inferred from broad-band GDSN data, Bull. Seismol. Soc. Am., 1:691–711.

    Google Scholar 

  • Christensen, D. H., and Ruff, L. J., 1986, Rupture process of the March 3, 1985 Chilean earthquake, Geophys. Res. Lett., 3:721–724.

    Article  ADS  Google Scholar 

  • Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragonie, R., Singh, S. K., and Suarez, G., 1986, The central Chile earthquake of 3 March 1985: a repeat of previous great earthquake in the region?, Science, 33:449–452.

    Article  ADS  Google Scholar 

  • Deschamps, A., Lyon Caen, H., and Madariaga, R., 1980, Mise au point des méthodes de calcul de sismogrammes synthétiques de longue période, Ann. Geophys., 6:167–178.

    Google Scholar 

  • Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H., 1981, Determination of earthquake source parameters from waveform data for studies of global regional seismicity, J. Geophys. Res., 6:2825–2852.

    Article  ADS  Google Scholar 

  • Eyidogan, H., Nabelek, J., and Toksoz, M. N., 1985, The Gazli, USSR, 19 March 1984 earthquake: the mechanism and tectonic implication, Bull. Seism. Soc. Am., 5:661–675.

    Google Scholar 

  • Gusev, A. A., 1983, Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion, Geophys. J. R. Astron. Soc, 4:787–808.

    Google Scholar 

  • Houston, H., Kanamori, H., 1986, Source spectra of great earthquake: teleseismic constraints on rupture process and strong motion, Bull. Seism. Soc. Am., 6:19–42.

    Google Scholar 

  • Kanamori, H., and Anderson, D. L., 1975, Theoretical basis of some empirical relation in seismologie, Bull. Seism. Soc. Am., 5:1073–1095.

    Google Scholar 

  • Kanamori, H., and Stewart, G., 1976, Mode of strain release along the Gibbs fracture zone, Mid-Atlantic Ridge, Phys. Earth Planet. Interiors, 1:312–332.

    Article  ADS  Google Scholar 

  • Kanamori, H., 1977, The energy release in great earthquakes, J. Geophys. Res., 2:2981–2987.

    Article  ADS  Google Scholar 

  • Kelleher, J., 1972, Rupture zones of large South American earthquakes and some predictions, J. Geophys. Res., 7:2087–2103.

    Article  ADS  Google Scholar 

  • Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves, Bull. Seism. Soc. Am., 2:491–506.

    Google Scholar 

  • Kind, R., and Seidl, D., 1982, Analysis of broad-band seismograms from the Chile-Peru area, Bull. Seism. Soc. Am., 2:2131–2145.

    Google Scholar 

  • Korrat, I., 1986, Mécanisme et distribution spatiale des epicentres en relation avec la rupture de la lacune de Valparaison (Chili) en Mars 1985, Thèse de doctorat, Université de Paris VII.

    Google Scholar 

  • Korrat, I., and Madariaga, R., 1986, Rupture of the Valparaiso (Chile) gap from 1971 to 1985, in: “Earthquake Source Mechanics”, Maurice Ewing volume 6, S. Das, J. Boatwright and C. H. Scholz, eds., pp 247–258, American Geophysical Union, Washington DC.

    Chapter  Google Scholar 

  • Malgrange, M., and Madariaga, R., 1983, Complex distribution of large thrust and normal fault earthquakes in Chilean subduction zone, Geophys. J. R. Astron. Soc, 3:489–505.

    Article  Google Scholar 

  • McCann, W., Nishenko, S., Sykes, L., and Krause, J., 1979, Seismic gaps and plate tectonics: seismic potential for major boundaries, Pageoph, 17:1082–1147.

    Article  Google Scholar 

  • Monfret, T., and Romanowicz, B., 1986, Importance of on scale observation of first arriving rayleigh wave trains for source studies: example of the Chilean event of March 3, 1985, observed on the GEOSCOPE and IDA networks, Geophys. Res. Lett., 3:1015–1018.

    Article  ADS  Google Scholar 

  • Nishenko, S., 1985, Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian margins of South America: a quantitative re-appraisal, J. Geophys. Res., 0:3589–3615.

    Article  ADS  Google Scholar 

  • Romanowicz, B., Cara, M., Fels, J. F., and Rouland, D., 1984, GEOSCOPE: a French initiative in long-period three component global seismic network, EOS, Trans. AGU, 2:753–754.

    Article  ADS  Google Scholar 

  • Ruff, L. J., Kanamori, H., 1983, The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves, Phys. Earth Planet. Inter., 1:202–230.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bezzeghoud, M., Deschamps, A., Madariaga, R. (1989). Broad-Band P-Wave Signals and Spectra from Digital Stations. In: Cassinis, R., Nolet, G., Panza, G.F. (eds) Digital Seismology and Fine Modeling of the Lithosphere. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6759-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6759-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6761-9

  • Online ISBN: 978-1-4899-6759-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics