Skip to main content

Part of the book series: Supplement Encyclopedia of Neuroscience ((SUPPENC))

  • 51 Accesses

Abstract

We do not yet know why larger bodied species of mammals, birds, and reptiles have larger brains. The evolutionary perspective on this problem is that species evolve to have brains that result in maximal reproductive success. This argument is based on two premises. First, there must be heritable variation in brain mass among the individuals of a species. Second, there must also be differential reproductive success among individuals according to differences in brain mass. Without controlled laboratory experiments, which are for the most part impractical, evolutionary biologists typically use cross species variation, which can be viewed as the outcome of a series of natural experiments: different species have evolved in response to environments in which different selective forces are preeminent. Relationships between variables such as brain mass, body mass, and ecological habits can help us to understand their functional significance, where function is interpreted in an evolutionary or adaptive sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Harvey PH (1988): The allometric approach to species differences in brain size. Hum Evol 3:461–471

    Article  Google Scholar 

  • Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL (1989): Hippocampal specialization of food-storing birds. Proc Nat Aca Sci USA 86:1388–1392

    Article  Google Scholar 

  • Martin RD (1981): Relative brain size and basal mass rate in terrestrial vertebrates. Nature 293:57–60

    Article  Google Scholar 

  • Pagel MD, Harvey PH (1988): How mammals produce large-brained offspring. Evolution 42:948–957

    Article  Google Scholar 

  • Pagel MD, Harvey PH (1989): Taxonomic differences in the scaling of brain on body weight among mammals. Science 244:1589–1593

    Article  Google Scholar 

  • Burwell CS, Robin ED, Whaley RD, Bickelmann AG (1956): Extreme obesity associated with alveolar hypoventilation. A Pickwickian syndrome. Am J Med 21:811–818

    Article  Google Scholar 

  • Gastaut H, Tassinari CA, Duron B (1965): Etude poly-graphique des manifestations épisodiques (hypniques et respiratoires) du syndrome de Pickwick. Rev Neurol 112:568–579

    Google Scholar 

  • Guilleminault C, Tilkian A, Dement WC (1976): The sleep apnea syndromes. Annu Rev Med 27:465–484

    Article  Google Scholar 

  • He J, Kryger MH, Zorick FJ, Conway W, Roth T (1988): Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest 94:9–14

    Article  Google Scholar 

  • Kryger MH, Roth T, Dement WC, eds. (1989): Principles and Practice of Sleep Medicine Philadelphia: WB Saunders

    Google Scholar 

  • Evans R (1988): The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  Google Scholar 

  • McEwen B, Brinton R, Chao H, Coirini H, Gannon M, Gould E, O’Callaghan J, Spencer R, Sakai R, Woolley C (1990): The hippocampus: A site for modulatory interactions between steroid hormones, neurotransmitters and neuropeptides. In: Neuroendrocrine Perspectives, Muller E, MacLeod R, eds. pp 99–131. New York: Springer-Verlag

    Google Scholar 

  • McEwen B, Coirini H, Danielsson A, Frankfurt M, Gould E, Mendelson S, Schumacher M, Segarra A, Woolley C (1991): Steroid and thyroid hormones modulate a changing brain. J Steroid Biochem (in press)

    Google Scholar 

  • Simmonds M, ed. (1990): Steroids and Neuronal Activity, CIBA Foundation Symposium, London: John Wiley

    Google Scholar 

  • De Camilli P, Harris SM, Huttner WB, Greengard P (1983): Synapsin I (Protein I), a nerve terminal-specific phosphopro-tein. J Cell Biol 96:1355–1373

    Article  Google Scholar 

  • Llinas R, McGuiness T, Leonard CS, Sugimori M, Greengard P (1985): Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad USA 82:3035–3039

    Article  Google Scholar 

  • Südhof TC, Czernik AJ, Kao H, Takei K, Johnston PA, Horiuchi A, Wagner M, Kanazir SD, Perin MS, De Camilli P, Greengard P (1989): Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphorproteins. Science 245:1474–1480

    Article  Google Scholar 

  • Südhof TC (1989): Synaptic vesicles. Current Opinion in Cell Biology 1:655–659

    Article  Google Scholar 

Download references

Authors

Editor information

Barry Smith George Adelman

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harvey, P.H., Pagel, M.D., Krieger, J., McEwen, B.S., Südhof, T.C. (1992). S. In: Smith, B., Adelman, G. (eds) Neuroscience Year. Supplement Encyclopedia of Neuroscience. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6754-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6754-1_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6756-5

  • Online ISBN: 978-1-4899-6754-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics