Skip to main content

Emergence of Nervous Coordination

Origins of Integrated Behavior

  • Chapter
Neuroembryology
  • 161 Accesses

Abstract

My topic, the emergence of order on the behavioral level, has two aspects. Since behavior emerges from the physiological activities of the nervous system, neurogenesis and the genesis of behavior are inseparable. The development of organization in the nervous system, in turn, has to be dealt with in terms of morphogenesis, cytogenesis, including ultrastructure, and physiological activity. Observation has to be supplemented by the analytical experiment. Such a multidisciplinary approach to our problem ranging from the behavioral to the ultrastructural level, is the great challenge for the future. It is beset with difficulties, not the least of which is the matter of communication between investigators in these different areas. A more immediate difficulty for my topic, apart from the fragmentary nature of the available material, is the fact that the relations between neurogenesis and the origin of behavior are by no means as straightforward and parallel as one might have expected. I shall attempt to deal with some of the intricacies of these relationships in a rather general way, but my old informant, the chick embryo, will supply most of the illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E. R., and Pepe, R. A. (1965). Ultrastructure of developing muscle cells in the chick embryo. Am. J. Anat. 116, 115–148.

    Article  Google Scholar 

  • Ă„nggard, L., Bergstroem, R., and Bernhard, C. G. (1961). Analysis of prenatal spinal reflex activity in sheep. Actak Physiol Scand. 53, 128–136.

    Article  Google Scholar 

  • Angulo y Gonzalez, A. W. (1932). The prenatal development of behavior in the albino rat. J. Comp. Neurol. 55, 395–442.

    Article  Google Scholar 

  • Barron, D. H. (1941). The functional development of some mammalian neuro-muscular mechanisms. Biol. Rev. Cambridge Phil. Soc. 16, 1–33.

    Article  Google Scholar 

  • Bodian, D. (1966). Development of fine structure of spinal cord in monkey fetuses. I. The motoneuron neuropil at the time of onset of reflex activity. Bull Johns Hopkins Hosp. 119, 129–149.

    Google Scholar 

  • Bullock, T. H., and Horridge, G. A. (1965). “Structure and Function in the Nervous Systems of Invertebrates.” Freeman, San Francisco.

    Google Scholar 

  • Bunge, M. B., Bunge, R. P., and Peterson, E. R. (1967). The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 6, 728–749.

    Article  Google Scholar 

  • Carmichael, L. (1926). The development of behavior in vertebrates experimentally removed from the influence of external stimulation. Psychol. Rev. 33, 51–58.

    Article  Google Scholar 

  • Carmichael, L. (1954). The onset and early development of behavior. In “Manual of Child Psychology” (L. Carmichael, ed.). Wiley, New York.

    Google Scholar 

  • Coghill, E. G. (1924). Rates of proliferation and differentiation in the central nervous system of Amblystoma. J. Comp. Neurol. 37, 71–109.

    Article  Google Scholar 

  • Coghill, E. G. (1929). “Anatomy and the Problem of Behavior.” Cambridge Univ. Press, London and New York.

    Google Scholar 

  • Corner, M. (1964). Rhythmicity in the early swimming of anuran larvae. J. Embryol. Exptl. Morphol. 12, 665–671.

    Google Scholar 

  • Corner, M., and Bot, A. P. C. (1967). Developmental patterns in the central nervous system of birds. III. Somatic motility during the embryonic period and its relations to behavior after hatching. Progr. Brain Res. 26, 214–236.

    Article  Google Scholar 

  • Corner, M., Schade, J. P., Sedlacek, J., Stoeckart, R., and Bot, A. P. C. (1967). Developmental patterns in the central nervous system of birds. I. Electrical activity in the cerebral hemisphere, optic lobe and cerebellum. Progr. Brain Res. 26, 145–192.

    Article  Google Scholar 

  • Crain, S. M. (1966). Development of “organotypic” bioelectric activities in central nervous tissues during maturation in cultures. Intern. Rev. Neurobiol. 9, 1–43.

    Article  Google Scholar 

  • Crain, S. M., and Peterson, E. R. (1967). Onset and development of functional interneuronal connections in expiants of rat spinal cord-ganglia during maturation in culture. Brain Res. 6, 750–762.

    Article  Google Scholar 

  • Crain, S. M., Bornstein, M. B., and Peterson, E. R. (1968a). Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectrical activity. Brain Res. 8, 363–372.

    Article  Google Scholar 

  • Crain, S. M., Peterson, E. R., and Bornstein, M. B, (1968b). Formation of functional neuronal connections between explants of various mammalian central nervous tissues during development in vitro. Ciba Found. Symp. Growth Nervous System pp. 13–31. Little, Brown, Boston, Massachusetts.

    Google Scholar 

  • Decker, J. D. (1967). Motility of the turtle embryo, Chelyda serpentina (LinnĂ©). Science 157, 952–954.

    Article  Google Scholar 

  • Decker, J. D., and Hamburger, V. (1967). The influence of different brain regions on periodic motility of the chick embryo. J. Exptl. Zool. 165, 371–384.

    Article  Google Scholar 

  • DeLong, R. G., and Coulombre, A. J. (1965). Development of the retinotectal topographic projection in the chick embryo. Exptl. Neurol. 13, 351–363.

    Article  Google Scholar 

  • Drachman, D. B. (1965). The developing motor end plate: curare tolerance in the chick embryo. J. Physiol. (London) 180, 735–740.

    Google Scholar 

  • Drachman, D. B., and Coulombre, A. J. (1962). Experimental club foot and arthrogryposis multiplex congenita. Lancet II, 523–526.

    Article  Google Scholar 

  • Drachman, D. B., and Sokoloff, L. (1966). The role of movement in embryonic joint development. Develop. Biol. 14, 401–420.

    Article  Google Scholar 

  • Gaze, R. M. (1967). Growth and differentiation. Ann. Rev. Physiol. 29, 59–86.

    Article  Google Scholar 

  • Gottlieb, G. (1966). Species identification by avian neonates: Contributary effect of prenatal auditory stimulation. Animal Behavior 14, 282–290.

    Article  Google Scholar 

  • Gottlieb, G, and Kuo, Z. Y. (1965). Development of behavior in the duck embryo. J. Comp. Physiol. Psychol. 59, 183–188.

    Article  Google Scholar 

  • Hamburger, V. (1948). The mitotic patterns in the spinal cord of the chick embryo and their relation to histogenetic processes. J. Comp. Neur. 88, 221–284.

    Article  Google Scholar 

  • Hamburger, V. (1956). Developmental correlations in neurogenesis. 14th Growth Symp., 191-212. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • Hamburger, V. (1962). Specificity in neurogenesis. J. Cellular Comp. Physiol., Suppl. 1, 81-92.

    Google Scholar 

  • Hamburger, V. (1963). Some aspects of the embryology of behavior. Quart. Rev. Biol. 38, 342–365.

    Article  Google Scholar 

  • Hamburger, V., and Balaban, M. (1963). Observations and experiments on spontaneous rhythmical behavior in the chick embryo. Develop. Biol. 7, 533–545.

    Article  Google Scholar 

  • Hamburger, V., and Oppenheim, R. (1967). Prehatching motility and hatching behavior in the chick. J. Exptl. Zool. 166, 171–204.

    Article  Google Scholar 

  • Hamburger, V., Balaban, M., Oppenheim, R., and Wenger, E. (1965). Periodic motility of normal and spinal chick embryos between 8 and 17 days of incubation. J. Exptl. Zool. 159, 1–14.

    Article  Google Scholar 

  • Hamburger, V., Wenger, E., and Oppenheim, R. (1966). Motility in the chick embryo in the absence of sensory input. J. Exptl. Zool. 162, 133–160.

    Article  Google Scholar 

  • Harrison, R. G. (1904). An experimental study of the relation of the nervous system to the developing musculature in the embryo of the frog. Am. J. Anat. 3, 197–220.

    Article  Google Scholar 

  • Hooker, D. (1952). “The Prenatal Origin of Behavior.” Univ. of Kansas Press, Lawrence, Kansas.

    Google Scholar 

  • Hughes, A. (1965). The development of behaviour in Eleutherodactylus martini-censis. Proc. Zool. Soc. London 144, part 2, 153–161.

    Article  Google Scholar 

  • Hughes, A., Bryant, S., and Bellairs, A. (1967). Embryonic behaviour in the lizard, Lacerta vivipara. J. Zool. London 153, 139–152.

    Article  Google Scholar 

  • Humphrey, T. (1954). The trigeminal nerve in relation to early human fetal activity. Proc. Assoc. Res. Nervous and Mental Diseases 33, 127–154.

    Google Scholar 

  • Humphrey, T. (1964). Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Progr. Brain Res. 4, 93–135.

    Article  Google Scholar 

  • Jacobson, M. (1966). Starting points for research in the ontogeny of behavior. Proc. 25th Symp. Soc. Develop. Biol, Haverford, 1966 pp. 339–383. Academic Press, New York.

    Google Scholar 

  • Källen, B. (1965). Early morphogenesis and pattern formation in the central nervous system. In “Organogenesis” (R. L. DeHaan and H. Ursprung, eds.), pp. 107–128.

    Google Scholar 

  • Kuo, Z. Y. (1967). “The Dynamics of Behavior Development.” Random House, New York.

    Google Scholar 

  • Levi-Montalcini, R. (1949). The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J. Comp. Neurol. 91, 209–242.

    Article  Google Scholar 

  • Levi-Montalcini, R. (1964). Events in the developing nervous system. Progr. Brain Res. 4, 1–26.

    Article  Google Scholar 

  • Levi-Montalcini, R. (1966). The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lectures Ser. 60, 217–259.

    Google Scholar 

  • Matthews, S. A., and Detwiler, S. R. (1926). The reactions of Amblystoma embryos following prolonged treatment with chloretone. J. Exptl. Zool. 45, 279–292.

    Article  Google Scholar 

  • Mumenthaler, M., and Engel, W. K. (1961). Cytological localization of cho-linesterase in developing chick embryo muscle. Acta Anat. 47, 274–299.

    Article  Google Scholar 

  • Peters, J. J., Vonderahe, A. R., and Powers, T. H. (1960). Chronological development of electrical activity in the optic lobes, cerebellum and the cerebrum of the chick embryo. Physiol Zool 33, 225–231.

    Google Scholar 

  • Preyer, W. (1885). “Specielle Physiologie des Embryo.” Grieben’s Verlag, Leipzig.

    Google Scholar 

  • Roeder, K. D. (1963). “Nerve Cells and Insect Behavior/’ Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Sperry, R. W. (1951). Mechanisms of neural maturation. In “Handbook of Experimental Psychology” (S. S. Stevens, ed.), pp. 236–280.

    Google Scholar 

  • Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. U. S. 50, 703–710.

    Article  Google Scholar 

  • Sperry, R. W. (1965). Embryogenesis of behavioral nerve nets. In “ Organogenesis” (R. L. DeHaan and H. Ursprung, eds.), pp. 161–186.

    Google Scholar 

  • Sperry, R. W., and Hibbard, E. (1968). Regulative factors in the orderly growth of retino-tectal connexions. Ciba Found. Symp. Growth Nervous System, pp. 41-52.

    Google Scholar 

  • Sullivan, G. E. (1966). Prolonged paralysis of the chick embryo, with special reference to effects on the vertebral column. Australian J. Zool. 14, 1–17.

    Article  Google Scholar 

  • Sullivan, G. E. (1967). Abnormalities of the muscular anatomy in the shoulder region of paralysed chick embryos. Australian J. Zool. 15, 911–940.

    Article  Google Scholar 

  • SzĂ©kely, G. (1954). Zur Ausbildung der lokalen funktionellen Spezifität der Retina. Acta Biol. Acad. Sci. Hung. 5, 157–167.

    Google Scholar 

  • SzĂ©kely, G. (1968). Development of limb movements: embryological physiological and model studies. Ciba Found. Symp. Growth Nervous System pp. 77–93. Little, Brown, Boston, Massachusetts.

    Google Scholar 

  • Tracy, H. C. (1926). The development of motility and behavior reactions in the toadfish (Opsanus tau). J. Comp. Neurol. 40, 253–369.

    Article  Google Scholar 

  • Tuge, H. (1931). Early behavior of embryos of the turtle, Terrapine Carolina. Proc. Soc. Exptl. Biol. Med. 29, 52–53.

    Article  Google Scholar 

  • Visintini, F., and Levi-Montalcini, R. (1939). Relazione tra differenziazionc strutturale e funzionale dei centri e delle vie nervöse nell’embrione di polio. Arch. Suisse Neurol. Psychiat. 43, 1–45.

    Google Scholar 

  • von Holst, E. (1935). Ăśber den Prozess der zentralnervösen Koordination. Pfdigers Arch. Ges. Physiol. 236, 149–158.

    Article  Google Scholar 

  • Watterson, R. L. (1965). Structure and mitotic behavior of the early neural tube In “Organogenesis” (R. L. DeHaan and H. Ursprung, eds.), pp. 129–159.

    Google Scholar 

  • Weiss, P. (1941a). Nerve patterns: the mechanics of nerve growth. Growth, Suppl., 5, 163-203.

    Google Scholar 

  • Weiss, P. (1941b). Self-differentiation of the basic patterns of coordination. Comp. Psychol. Monogr. 17, 1–96.

    Google Scholar 

  • Weiss, P. (1955). Nervous system. In “Analysis of Development” (B. H. Wiilier, P. A. Weiss, and V. Hamburger, eds.), pp. 346–401. Saunders, Philadelphia, Pennsylvania.

    Google Scholar 

  • Wilson, D. M. (1961). The central nervous control of flight in a locust. J. Exptl. Biol 38, 471–490.

    Google Scholar 

  • Windle, W. F. (1940). “Physiology of the Fetus.” Saunders, Philadelphia.

    Google Scholar 

  • Windle, W. F., and Fitzgerald, J. E. (1937). Development of the spinal reflex mechanism in human embryos. J. Comp. Neurol. 67, 493–509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Hamburger, V. (1990). Emergence of Nervous Coordination. In: Neuroembryology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6743-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6743-5_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6745-9

  • Online ISBN: 978-1-4899-6743-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics