Skip to main content

Abstract

Single gene mutations that affect central nervous system (CNS) structure and, in turn, behavior offer the clearest example of the involvement of genes in the development and function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J (1972): Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514.

    Google Scholar 

  • Altman J, Bayer SA (1985a): Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26.

    Google Scholar 

  • Altman J, Bayer SA (1985b): Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol 231:27–41.

    Google Scholar 

  • Altman J, Bayer SA (1985c): Embryonic development of the rat cerebellum III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:42–65.

    Google Scholar 

  • Baker R, Weiser M, McElligott JG (1988): Adaptive gain control of the vestibulo-ocular reflex in goldfish. I. Hemicerebellectomy. Soc Neurosci Abstr 14:169.

    Google Scholar 

  • Ball GG, Micco DJ Jr, Berntson GG (1974): Cerebellar stimulation in the rat: complex stimulation-bound oral behaviors and self-stimulation. Physiol Behav 13:123–127.

    Google Scholar 

  • Berntson GG, Potolicchio SJ Jr, Miller NE (1973): Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proc Nat Acad Sci USA 70:2497–2499.

    Google Scholar 

  • Berntson GG, Torello MW (1982): The paleocerebellum and the integration of behavioral function. Physiol Psychol 10:2–12.

    Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990): Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572.

    Google Scholar 

  • Blatt GJ, Eisenman LM (1985): A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128.

    Google Scholar 

  • Bordarier C, Robain L, Rthore M-O, Dulac O, Dhellemes C (1986): Inverted neurons in agyria. Hum Genet 73:374–378.

    Google Scholar 

  • Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener HC (1989): The cerebellum contributes to mental skills. Behav Neurosci 103:442–446.

    Google Scholar 

  • Caddy KWT, Biscoe TJ (1979): Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Phil Trans R Soc London (Biol) 287:167–201.

    Google Scholar 

  • Caddy KWT, Sidman RL (1981): Purkinje cells and granule cells in the cerebellum of the stumbler mutant mouse. Dev Brain Res 1:221–236.

    Google Scholar 

  • Caddy KWT, Sidman RL, Eicher E (1981): Stumbler, a new mutant mouse with cerebellar disease. Brain Res 208:251–255.

    Google Scholar 

  • Caviness VS Jr (1977): Reeler mutant mouse: a genetic experiment in developing mammalian cortex. In: Society for Neuroscience Symposia Vol 2, Cowan WM, Ferrandeli JA, eds. Bethesda: Society of Neuroscience, pp 27–46.

    Google Scholar 

  • Caviness VS Jr (1980): The developmental consequences of abnormal cell position in the reeler mouse. TINS 3:31–33.

    Google Scholar 

  • Caviness VS Jr, Rakic P (1978): Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326.

    Google Scholar 

  • Courchesne E, Hesselink JR, Jernigan TL, Yeung-Courchesne R (1987): Abnormal neuroanatomy in a nonretarded person with autism: unusual findings with magnetic resonance imaging. Arch Neurol 44:335–341.

    Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988): Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318:1349–1354.

    Google Scholar 

  • Crepel F, Delhaye-Bouchard N, Guastavino J-M, Sampaio I (1980): Multiple innervation of cerebellar Purkinje cells by climbing fibers in the staggerer mutant mouse. Nature 283:483–484.

    Google Scholar 

  • Desclin JC (1974): Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res 77:365–384.

    Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967): The Cerebellum as a Neuronal Machine. New York: Springer-Verlag.

    Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966): The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol (Lond.) 182:268–296.

    Google Scholar 

  • Fortier PA, Smith AM, Rossignol S (1987): Locomotor deficits in the mutant mouse, Lurcher. Exp Brain Res 66:271–286.

    Google Scholar 

  • Fujita S (1969): Autoradiographic studies on histogenesis of the cerebellar cortex. In: Neurobiology of Cerebellar Evolution and Development, Llinás R, ed. Chicago: American Medical Association Education and Research Foundation, pp 743–747.

    Google Scholar 

  • Gadisseux JF, Evrard P (1985): Glial-neuronal relationship in the developing central nervous system. Dev Neurosci 7:12–32.

    Google Scholar 

  • Gaffney GR, Tsai L, Kuperman S, Minchin S (1987): Cerebellar structure in autism. AJDC 141:1330–1332.

    Google Scholar 

  • Gilbert PFC, Thach WR (1977): Purkinje cell activity during motor learning. Brain Res 128:309–328.

    Google Scholar 

  • Goffinet AM (1983): The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol 168:73–86.

    Google Scholar 

  • Goffinet AM (1984): Events governing the organization of post-migratory neurons: studies on brain development in normal and reeler mice. Brain Res Rev 7:261–296.

    Google Scholar 

  • Goldowitz D (1989): The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: evidence from homozygous weaver chimeras. Neuron 2:1565–1575.

    Google Scholar 

  • Goldowitz D, Koch J (1986): Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. Behav Neural Biol 46:216–226.

    Google Scholar 

  • Goldowitz D, Mullen RJ (1982): Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci 2:1474–1485.

    Google Scholar 

  • Goodlett CR, Hamre KM, West JR (1990): Regional differences in the timing of dendritic outgrowth of Purkinje cells in the vermal cerebellum demonstrated by MAP2 immunocytochemistry. Dev Brain Res 53:131–134.

    Google Scholar 

  • Gruneberg H (1963): The Pathology of Development: A Study of Inherited Skeletal Disorders in Animals. New York: John Wiley & Sons.

    Google Scholar 

  • Guenet JL, Sotelo C, Mariani J (1983): Hyperspiny Purkinje cell, a new neurological mutation in the mouse. J Hered 74:105–108.

    Google Scholar 

  • Hallonet MER, Teillet MA, Le Douarin NM (1990): A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31.

    Google Scholar 

  • Harding AE (1984): The Hereditary Ataxias and Related Disorders. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Hatten ME, Liem RKH, Mason CA (1986): Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci 6:2676–2683.

    Google Scholar 

  • Hatten ME, Messer A (1978): Postnatal cerebellar cells from Staggerer mutant mice express embryonic cell surface characteristic. Nature 276:504–506.

    Google Scholar 

  • Hausmann B, Mangold U, Sievers J, Berry M (1985): Derivation of cerebellar Golgi neurons from the external granular layer: evidence from explanation of external granule cells in vivo. J Comp Neurol 232:511–522.

    Google Scholar 

  • Heckroth JA, Goldowitz D, Eisenman LM (1988): Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J Comp Neurol 279:546–555.

    Google Scholar 

  • Heckroth JA, Goldowitz D, Eisenman LM (1990): Olivocerebellar fiber maturation in normal and lurcher mutant mice: defective development in lurcher. J Comp Neurol 279:546–555.

    Google Scholar 

  • Heh CWC, Smith R, Wu J, Hazlett E, Russel A, Asarnow R, Tanguay P, Buchsbaum M (1989): Positron emission tomography of the cerebellum in autism. Am J Psychiatry 146:242–245.

    Google Scholar 

  • Herrup K (1983): Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 11:267–274.

    Google Scholar 

  • Herrup K, Mullen RJ (1979a): Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172:1–12.

    Google Scholar 

  • Herrup K, Mullen RJ (1979b): Staggerer chimeras: Intrinsic nature of Purkinje cell defects and implications for normal cerebellar development. Brain Res 178:443–457.

    Google Scholar 

  • Herrup K, Sunter K (1987): Granule cell death during cerebellar development of Staggerer mouse chimeras: a test of the numerical matching hypothesis. J Neurosci 7:829–836.

    Google Scholar 

  • Herrup K, Trenkner E (1987): Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neurosci 23:871–885.

    Google Scholar 

  • Herrup K, Wilczynski SL (1982): Cerebellar cell degeneration in the leaner mutant mouse. Neurosci 7:2185–2196.

    Google Scholar 

  • Hirano A, Dembitzer HM (1973): Cerebellar alterations in the weaver mouse. J Cell Biol 56:478–486.

    Google Scholar 

  • Holmes G (1939): The cerebellum of man. Brain 62:1–30.

    Google Scholar 

  • Inhoff AW, Diener HC, Rafal RD, Ivry R (1989): The role of cerebellar structures in the execution of serial movements. Brain 112:565–581.

    Google Scholar 

  • Ito M (1982): Cerebellar control of the vestivulo-ocular reflex—around the flocculus hypothesis. Annu Rev Neurosci 5:275–296.

    Google Scholar 

  • Ito M (1984a): The modifiable neuronal network of the cerebellum. Jpn J Physiol 34:781–792.

    Google Scholar 

  • Ito M (1984b): The Cerebellum and Neural Control. New York: Raven Press.

    Google Scholar 

  • Kelly TM, Zuo CC, Bioedel JR (1990): Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behav Brain Res 38:7–18.

    Google Scholar 

  • Lalonde R (1986): Delayed spontaneous alternation in weaver mutant mice. Brain Res 398:178–180.

    Google Scholar 

  • Lalonde R (1987a): Motor abnormalities in weaver mutant mice. Exp Brain Res 65:479–481.

    Google Scholar 

  • Lalonde R (1987b): Motor abnormalities in staggerer mutant mice. Exp Brain Res 68:417–420.

    Google Scholar 

  • Lalonde R, Botez MI, Boivin D (1986a): Spontaneous alternation and habituation in a t-maze in nervous mutant mice. Behav Neurosci 100:350–352.

    Google Scholar 

  • Lalonde R, Lamarre Y, Smith AM, Botez MI (1986b): Spontaneous alternation and habituation in lurcher mutant mice. Brain Res 362:161–164.

    Google Scholar 

  • Lalonde R, Manseau M, Botez MI (1987): Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice. Brain Res 411:187–189.

    Google Scholar 

  • Lalonde R, Manseau M, Botez MI (1988): Spontaneous alternation and exploration in weaver mutant mice. Behav Brain Res 31:111–114.

    Google Scholar 

  • Landis DMD, Landis SC (1978): Several mutations in mice that affect the cerebellum. Adv Neurol 21:85–105.

    Google Scholar 

  • Landis DMD, Sidman RL (1978): Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–864.

    Google Scholar 

  • Landis SC (1973): Changes in neuronal mitochondrial shape in brains of nervous mutant mice. J Hered 64:193–196.

    Google Scholar 

  • Landis SC, Mullen RJ (1978): The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol 177:125–143.

    Google Scholar 

  • Larramendi LMH (1969): Analysis of synaptogenesis in the cerebellum of the mouse. In: Neurobiology of Cerebellar Evolution and Development, Llinás R, ed. Chicago: American Medical Association Education and Research Foundation, pp 803–843.

    Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1989): Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci 103:998–1008.

    Google Scholar 

  • Lisberger SG (1988): The neural basis for learning of simple motor skills. Science 242:728–735.

    Google Scholar 

  • Lyon MF, Searle AG, eds. (1989) Genetic Variants and Strains of the Laboratory Mouse, 2nd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Mariani J (1982): Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 13:119–126.

    Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977): Anatomical physiological and biochemical studies of the cerebellum from reeler mutant mice. Phil Trans R Soc Lond B 281:1–28.

    Google Scholar 

  • Martinez S, Alvarado-Mallart RM (1989): Rostral cerebellum originates from the caudal portion of the so-called “mesencephalic” vesicle: a study using chick/quail chimeras. Eur J Neurosci 1:549–560.

    Google Scholar 

  • Mason CA, Blazeski R (1989): Climbing fibers contact target Purkinje cells in embryonic mouse cerebellum. Soc Neurosci Abstr 15:959.

    Google Scholar 

  • McCormick DA, Clark GA, Lavond DG, Thompson RF (1982): Initial localization of the memory trace for a basic form of learning. Proc Natl Acad Sci USA 79:2731–2735.

    Google Scholar 

  • McCormick DA, Thompson RF (1984): Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci 4:2811–2822.

    Google Scholar 

  • McLaren A (1976): Mammalian Chimeras. Cambridge: Cambridge University Press.

    Google Scholar 

  • Messer A, Hatch K (1984): Persistence of cerebellar thymidine kinase in Staggerer and Hypothyroid mutants. J Neurogenet 1:239–248.

    Google Scholar 

  • Miale I, Sidman RL (1961): An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296.

    Google Scholar 

  • Mikoshiba K, Yokoyama M, Nishimura O, Katsuki M, Nomura T, Tsukada Y (1985): Mosaic expression of the Reeler and normal phenotypes in the cerebral cortex in Reeler-normal chimeras at a late embryonic stage. Dev Growth Differ 27:737–744.

    Google Scholar 

  • Mintz B (1964): Formation of genetically mosaic mouse embryos, and early development of lethal (t12-t12)-normal mosaics. J Exp Zool 157:273–292.

    Google Scholar 

  • Mullen RJ (1977a): Site of pcd gene action and Purkinje cell mosaicism in cerebella of chimaeric mice. Nature 270:245–247.

    Google Scholar 

  • Mullen RJ (1977b): Genetic dissection of the CNS with mutant-normal mouse and rat chimeras. In: Society for Neuroscience Symposium, Vol II, Cowan WM, Ferendelli JA, eds. Bethesda: Society of Neuroscience, pp 47–65.

    Google Scholar 

  • Mullen RJ (1982): Analysis of CNS development with mutant mice and chimeras. In: Genetic Approaches to Developmental Neurobiology, Tsukada Y, ed. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Mullen RJ, Eicher E, Sidman RL (1976): Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73:208–212.

    Google Scholar 

  • Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR (1989): Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 46:689–694.

    Google Scholar 

  • Oda S (1981): A new allele of the tottering locus, rolling mouse Nagoya, on chromosome no. 8 in the mouse. Jpn J Genet 56:295–299.

    Google Scholar 

  • Pinto-Lord MC, Evrard P, Caviness VS Jr (1982): Obstructed neuronal migration along radial glial fibers in the neocortex of the Reeler mouse: a Golgi-EM analysis. Dev Brain Res 4:379–393.

    Google Scholar 

  • Rakic P (1971): Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in macacus rhesus. J Comp Neurol 141:283–312.

    Google Scholar 

  • Rakic P (1976): Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by single gene mutations in mice. Cold Spring Harbor Symp Quant Biol 60:333–346.

    Google Scholar 

  • Rakic P, Sidman RL (1973a): Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 152:103–132.

    Google Scholar 

  • Rakic P, Sidman RL (1973b): Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152:133–162.

    Google Scholar 

  • Ramón y Cajal S (1952): Histologie du Systeme Nerveux de l’Homme et des Vertebrates. Madrid: Instituto Ramon y Cajal.

    Google Scholar 

  • Ramón y Cajal S (1960): Studies on Vertebrate Neurogenesis, Guth L, trans. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Reis DJ, Doba N, and Nathan MA (1973): Predatory attack, grooming, and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182:845–847.

    Google Scholar 

  • Rezai Z, Yoon CH (1972): Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice. Dev Biol 29:17–26.

    Google Scholar 

  • Robinson DA (1987): The windfalls of technology in the oculomotor system. Invest Ophthal Vis Sci 28:1912–1925.

    Google Scholar 

  • Roffler-Tarlov S, Graybiel AM (1986): Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions. J Neurosci 6:3319–3330.

    Google Scholar 

  • Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N (1990): Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci USA 87:4189–4192.

    Google Scholar 

  • Sadler M, Berry M (1989): Topological link-vertex analysis of the growth of Purkinje cell dendritic trees in normal, reeler, and weaver mice. J Comp Neurol 289:260–283.

    Google Scholar 

  • Schmidt MJ, Sawyer BD, Perry KW, Fuller RW, Foreman MM, Ghetti B (1982): Dopamine deficiency in the weaver mutant mouse. J Neurosci 2:376–380.

    Google Scholar 

  • Sidman RL (1968): Development of interneuronal connections in brains of mutant mice. In Physiological and Biochemical Aspects of Nervous Integration, Carlson FD, ed. Englewood Cliffs, NJ: Prentice-Hall. pp 163–193.

    Google Scholar 

  • Sidman RL (1987): Neuropathology, mutant studies. In: Encyclopedia of Neuroscience, Adelman G, ed. Boston: Boston Birkhäuser, pp 828–832.

    Google Scholar 

  • Sidman RL, Green MC, Appel S (1965): Catalogue of the Neurological Mutants of Mice. Cambridge: Harvard University Press.

    Google Scholar 

  • Smeyne RJ, Goldowitz D (1989): Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci 9:1608–1620.

    Google Scholar 

  • Smeyne RJ, Goldowitz D (1990): Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Dev Brain Res 52:211–218.

    Google Scholar 

  • Snider SR (1982): Cerebellar pathology in schizophrenia—cause or consequence? Neurosci Biobehav Rev 6:47–53.

    Google Scholar 

  • Snider RS, Maiti A (1976): Cerebellar contributions to the Papez circuit. J Neurosci Res 2:133–146.

    Google Scholar 

  • Sonmez E, Herrup K (1984): Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Dev Brain Res 12:271–283.

    Google Scholar 

  • Sotelo C (1975): Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44.

    Google Scholar 

  • Sotelo C (1980): Mutant mice and the formation of cerebellar circuitry. Trends Neurosci Feb:33-35.

    Google Scholar 

  • Sotelo C, Changeux JP (1974): Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of Staggerer mutant mice. Brain Res 67:519–526.

    Google Scholar 

  • Sotelo C, Triller A (1979): Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: a model to study presynaptic stabilization. Brain Res 175:11–36.

    Google Scholar 

  • Supple WF Jr, Leaton RN (1990): Cerebellar vermis: essential for classically conditioned bradycardia in the rat. Brain Res 509:17–23.

    Google Scholar 

  • Swisher DA, Wilson DB (1977): Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J Comp Neurol 173:205–217.

    Google Scholar 

  • Tarkowski AK (1961): Mouse chimaeras developed from fused eggs. Nature (Lond.) 190:857–860.

    Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Yokoyama M, Mikoshiba K (1986): Observations on the cerebellum of norma-reeler mutant mouse chimera. J Comp Neurol 252:264–278.

    Google Scholar 

  • Trenkner E (1979): Postnatal cerebellar cells of Staggerer mutant mice express immature components on their surfaces. Nature 277:566–567.

    Google Scholar 

  • Triarhou LC, Ghetti B (1987): Neuroanatomical substrate of behavioural impairment in Weaver mutant mice. Exp Brain Res 68:434–436.

    Google Scholar 

  • Vogel MW, Herrup K (1989): Numerical matching in the mammalian CNS: lack of a competitive advantage of early over late-generated cerebellar granule cells. J Comp Neurol 283:118–128.

    Google Scholar 

  • Vogel MW, Sunter K, Herrup K (1989): Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death. J Neurosci 9:3454–3462.

    Google Scholar 

  • Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M (1987): Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 124:379–389.

    Google Scholar 

  • Weiser M, McElligott JG, Baker R (1988): Adaptive gain control of the vestibulo-ocular reflex in the goldfish. II. Total cerebellectomy. Soc Neurosci Abstr 14:169.

    Google Scholar 

  • Welsh JP, Harvey JA (1989): Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. J Neurosci 9:299–311.

    Google Scholar 

  • West MJ, Del Cerro M (1976): Early formation of synapses in the molecular layer of the fetal rat cerebellum. J Comp Neurol 165:137–160.

    Google Scholar 

  • Wetts R, Herrup K (1982a): Interaction of granule, Purkinje, and inferior olivary neurons in lurcher chimeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98.

    Google Scholar 

  • Wetts R, Herrup K (1982b): Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362.

    Google Scholar 

  • Wetts R, Herrup K (1983): Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Dev Brain Res 10:41–47.

    Google Scholar 

  • Wille W, Trenkner E (1981): Changes in particulate neuraminidase activity during normal and Staggerer mutant mouse development. J Neurochem 37:443–446.

    Google Scholar 

  • Yamano T, Suzuki K (1985): Abnormalities of Purkinje cell arborization in brindled mouse cerebellum. J Neuropathol Exp Neurol 44:85–96.

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985a): Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60:87–98.

    Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985b): Classical conditioning of the nictitating membrane response of the rabbit. II. Lesion of the cerebellar cortex. Exp Brain Res 60:99–113.

    Google Scholar 

  • Yoon CH (1972): Developmental mechanism for changes in cerebellum of “staggerer” mouse, a neurological mutant of genetic origin. Neurology 22:743–754.

    Google Scholar 

  • Yoon CH (1976): Pleiotropic effect of the Staggerer gene. Brain Res 109:206–215.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldowitz, D., Eisenman, L.M. (1992). Genetic Mutations Affecting Murine Cerebellar Structure and Function. In: Driscoll, P. (eds) Genetically Defined Animal Models of Neurobehavioral Dysfunctions. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6732-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6732-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6734-3

  • Online ISBN: 978-1-4899-6732-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics