Skip to main content

Elongation Factor 3 — A Unique Fungal Protein

  • Chapter
New Approaches for Antifungal Drugs

Abstract

This chapter describes the structural features and the function of a novel fungal protein, elongation factor 3 (EF-3), which appears to be present only in the fungal family. The translational machinery of yeast is nonfunctional without this protein. A physical analog of EF-3 is absent in higher eukaryotes. Extensive knowledge of the structure and function of this unique yeast protein and comparative structural analyses of EF-3 with other eukaryotic translational factors is expected to provide a deeper understanding of the precise role of EF-3 in translation. The information in turn is expected to allow us to identify an inhibitory compound to interfere with the biological function of this unique fungal protein. Inhibitors of EF-3 function could potentially be exploited toward the development of a much needed antifungal agent. The increased number of immunosuppressed patients from the use of high dose chemotherapy, immunosuppressive drugs to support organ transplant, and increased incidence of acquired immunodeficiency syndrome (AIDS) has led to an increase in the number of systemic fungal infections by primary pathogens and opportunistic fungi (Sang et al., 1979). There is an ever-increasing demand to develop a more potent fungicidal agent with less toxic side effects to combat opportunistic infections in cancer and in immunocompromised diseases, such as AIDS. EF-3 may be such a unique target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames GFL, Mimura CS, Holbrook SR, Shyamala V(1992): Traffic ATPases: A superfamily of transport proteins operating from Escherichia coli to humans. Adv. Enzymol. A. Meister, ed. New York: John Wiley & Sons, Vol. 65, 1–49

    Google Scholar 

  • Azzaria M, Schurr E, Gros P (1989): Discrete mutations introduced in the predicted nucleotide-binding sites of the mdrl gene abolish its ability to confer multidrug resistance. Mol Cell Bio 9(12):5289–5297

    Google Scholar 

  • Chaisson R (1990): Prevention of opportunistic infections in patients with HIV. MMJ 39(2):156–160

    Google Scholar 

  • Charaburtty K(1989): Role of protein phosphorylation and dephosphorylation in translational elongation reactions. J Cell Biol 107:344a

    Google Scholar 

  • Chakraburtty K, Kamath A (1989): Protein synthesis in yeast. Int J Biochem 20(6):581–590

    Article  Google Scholar 

  • Clark B, Kjeldgaard M, La Cour T, Trirup S, Nyborg J (1990): Structural determination of the functional sites of E. coli elongation factor Tu. Biochem Biophys Acta 1050(1–3):203–208

    Google Scholar 

  • Classen LA, Ahn B, Koo HS, Grossman L (1991): Construction of deletion mutants of the Escherichia coli uvrA protein and their purification from inclusion bodies. J Biol Chem 266(17):11380–11387

    Google Scholar 

  • Cornwell MM, Tsuruo T, Gottesman MM, Pastan I(1987): ATP-binding properties of P-glycoprotein from multidrug-resistant KB cells. FASEB J 1(1):51–54

    Google Scholar 

  • Culbertson MR, Leeds P, Sandbaken MG, Wilson PG(1990):In Frameshift suppression in ribosomes. Hill WE, Dahlberg A, Garett RA, Moore PB, Schlessinger D, Warner JR, eds. Washington D.C: AMS Press, pp 318–330

    Google Scholar 

  • Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE, Kazazian HH (1990): A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346(6282):366–369

    Article  Google Scholar 

  • Dasmahapatra B, Chakraburtty K (1981): Purification and properties of elongation factor 3 from Saccharomyces cerevisiae. J Biol Chem 256(19): 9999–10004

    Google Scholar 

  • Dever TE, Glynias MJ, Merrick WC (1987): GTP-binding domain — Three consensus sequence elements with distinct spacing. Proc Nat Acad Sci USA 84(7):1814–1818

    Article  Google Scholar 

  • DiDomenico B, Lupisella J, Sandbaken MG, Chakraburtty K (1991): Isolation and sequence analysis of the gene encoding translation-elongation factor 3 from Candida albicans. Yeast 8(5): 337–352

    Article  Google Scholar 

  • Doolittle RF, Johnson MS, Husain I, Houten BV, Thomas DC, Sancar A (1986): Domainal evoluation of a prokaryotic DNA repair protein and its relationship to active-transport proteins. Nature (Lond) 323(6087):451–453

    Article  Google Scholar 

  • Dreusicke D, Schulz GE (1986): The glycine-rich loop of adenylalc kinase forms a giant anion hole. FEBS Lett 208:301–304

    Article  Google Scholar 

  • Dreusicke D, Schulz GE (1986): The glycine-rich loop of adenylalc kinase forms a giant anion hole. FEBS Lett 208:301–304

    Article  Google Scholar 

  • Eckstein F(1980): Nucleotide analogues for the study of enzyme mechanisms. Trends Biochem 5(6):157–159

    Article  Google Scholar 

  • Falahee MB, Weiss RB, O’Connor M, Doonan S, Gesteland RF, Alkins JF (1988): Mutants of translational components that alter reading frame by two steps forward or one step back. J Biol Chem 263(34):18099–18103

    Google Scholar 

  • Fry DC, Kuby SA, Mildvan AS(1986): ATP-binding site of adenylate kinase — Mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc Natl Acad Sci USA 83(4):907– 911

    Article  Google Scholar 

  • Gnirke A, Geigenmuler U, Rheinberger HJ, Nierhaus KH(1989): Analysis of the ribosomal three-site model with a heteropolymetric mRNA. The allesteric three site model for the ribosomal elongation cycle, analysis with a heteropolymetric mRNA. J Biol Chem 264(13):7291–7301.

    Google Scholar 

  • Gregory RI, Rich DP, Cheng SH, Souza DW, Paul S, Manavalan P, Anderson MP, Welsh MJ, Smith A (1991): Maturation and function of the cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol 11(8):3886–3893

    Google Scholar 

  • Guthri C, Fink GR (1991): Guide to Yeast Genetics and Molecular Biology — A Method in Enzymology Series. Orlando, FL: Academic Press

    Google Scholar 

  • Hartwell L, McLaughlin C (1968): Macromolecular synthesis in temperaturesensitive mutants of yeast. J Bacteriol 96(5):1664–1671

    Google Scholar 

  • Herrera F, Martinez JA, Moreno N, Sadnik I, McLaughlin CS, Feinberg B, Moldave K(1984): Identification of an altered elongation factor in temperature-sensitive mutant ts 7∙ 14 of Saccharomyces cerevisiae. J Biol Chem 259(23): 14347–14349

    Google Scholar 

  • Hershey JWB (1991): Translational control in mammalian cells. Annu Rev Biochem 60:717–755

    Article  Google Scholar 

  • Herskowitz I (1987): Functional inactivation of genes by dominant negative mutations. Nature 329(613):219–222

    Article  Google Scholar 

  • Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Holland IB, Gray L, Buckel SD, Bell AW, Hermodson MA (1986): A family of related ATPbinding subunits coupled to many distinct biological processes in bacteria. Nature 323(2):448–450

    Article  Google Scholar 

  • Hutchinson JS, Feinberg B, Rothwell TC, Moldave K (1984): Monoclonal antibody specific for yeast elongation factor 3. Biochemistry 23(13):3055–3063

    Article  Google Scholar 

  • Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard R, Higgins C (1990): Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346(6282):362–365

    Article  Google Scholar 

  • Jackson HC, Colthurst D, Hancock V, Marriott MS (1991): No detection of characteristic fungal protein elongation factor EF-3 in Pneumocystis carinii. J Infect Dis 163(3):657–677

    Article  Google Scholar 

  • Jehn U (1988): Managing fungal and viral infections in the immunocompromised host. Recent Results Cancer Res 108:61–70

    Article  Google Scholar 

  • Jurnak F (1985): Structure and GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230(4721):32–36

    Article  Google Scholar 

  • Jurnak F, Heffron S, Bergmann E (1990): Conformational changes involved in the activation of ras p21: Implications for related proteins. Cell 60(4):525–528

    Article  Google Scholar 

  • Kamath A, Chakraburtty K (1989): Role of yeast elongation factor 3 in the elongation cycle. J Biol Chem 264(26):15423–15428

    Google Scholar 

  • Kamath A, Chakraburtty K (1986a): Identification of an altered elongation factor in thermolabile mutants of the yeast Saccharomyces cerevisiaeJ Biol Chem 261(27):12593–12595

    Google Scholar 

  • Kamath A, Chakraburtty K (1986b): Purification of elongation factor 3 from a temperature-sensitive mutant 13–06 of the yeast Saccharomyces cerevisiaeJ Biol Chem 261(27):12596–12598

    Google Scholar 

  • Knowles JR (1980): Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  Google Scholar 

  • Kuchler K, Sterne RE, Thorner J (1989): Saccharomyces cerevisiae STE6 gene product: A novel pathway for protein export in eukaryotic cells. EMBO J 8(13):3973–3984

    Google Scholar 

  • Kurland CG, Gallent JA(1986): Accuracy in molecular processes. Kirkwood et al., eds. N.Y: Chapman Hall, pp 127–157

    Book  Google Scholar 

  • Mendenhall MD, Richardson HE, Reed SI(1988): Dominant negative protein kinase mutations that confer a G1 arrest phenotype. Proc Natl Acad Sci USA 85(12):4426–4430

    Article  Google Scholar 

  • Milburn MV, Tong L, de Vos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990): Molecular switch for signal transduction — Structural differences between active and inactive forms of protooncogenic ras proteins. Science. 247(4945):939–945

    Article  Google Scholar 

  • Miller DL, Weissbach H(1979): In Factors involved in the transfer of aminoacyltRNA to the ribosome. Weissbach H, Pestka S, eds. N.Y: Academic Press, pp 324–369

    Google Scholar 

  • Mimura CS, Holbrook SR, Ames GFL (1991): Structural model of the nucleotidebinding conserved component of periplasmic permeases. Proc Natl Acad Sci USA 88(1):84–88

    Article  Google Scholar 

  • Mimura CS, Admon A, Hurt KA, Ames GFL (1990): The nucleotide-binding site of Hisp, a membrane protein of the histadine permease. J Biol Chem 265(32):19535–19542

    Google Scholar 

  • Miyazaki M, Kagiyama H (1990): Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3). J Biochem (Jap) 108(6):1001–1008

    Google Scholar 

  • Miyazaki M, Uritani M, Kitaoka Y, Kagiyama H (1990): Functional role and biochemical properties of yeast peptide elongation 3 (EF-3). In: NATO ASI Series. 49: Post-Transcriptional Control of Gene Expression, McCarthy JEG, Tuite MF, eds. Berlin, Heidelberg: Spinger-Verlag, 1990

    Google Scholar 

  • Moldave K (1985): Eukaryotic protein synthesis. Annu Rev Biochem 54: 1109–1149

    Article  Google Scholar 

  • Moldave K, Harris J, Sabo W, Sadnik I (1979): Protein synthesis and aging: Studies with cell-free mammalian systems. Fed Proc 38(6):1979–1983

    Google Scholar 

  • Nielson JB, Plant PW, Haschmeyer AE (1976): Polypeptide elongation factor and the control of elongation rate in rat liver In Vivo. Nature 264(5588):804–806

    Article  Google Scholar 

  • Nierhaus KH (1990): The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29(21):4997–5008

    Article  Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989): Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    Article  Google Scholar 

  • Pain VM (1986): Initiation of protein synthesis in mammalian cells. Biochem J 253(3):625–637

    Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979): Phenotypic suppression of nonsense mutants in yeast aminoglycoside antibiotics. Nature 277(5692):148–150

    Article  Google Scholar 

  • Pastan I, Gottesman MM (1991): Multidrug resistance. Annu Rev Med 42: 277–286

    Article  Google Scholar 

  • Palfreyman MG, McCann PP, Lovenberg W, Temple JG, Sjoerdsma A (1989): Enzymes as Targets for Drug Design. N.Y: Academic Press

    Google Scholar 

  • Pirsch JD, Maki DG (1986): Infections after T-cell depleted marrow transplants. Ann Intern Med 104(5):619–631

    Article  Google Scholar 

  • Qin S, Xie A, Christina M, Banato M, McLaughlin C (1990): Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiaeJ Biol Chem 265(3):1903–1912

    Google Scholar 

  • Rheinberger HJ, Geigenmuller U, Gnirke A, Hausner TP, Remme J, Saruyama H, Nierhaus KH(1990): In Allosteric three-site model for the ribosomal elongation cycle. Hill WE, Dahlberg A, Garett RA, Moore PB, Schlessinger D, Warner JR, eds. Washington D.C: ASM Press, pp 318–330

    Google Scholar 

  • Riis B, Rattan SI, Clark BF, Merrick WC (1990): Eukaryotic protein elongation factors. Trends Biochem Sci 15(11):420–424

    Article  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC (1989): Identification of the cystic fibrosis gene: cloning and characterization of the complementary DNA. Science 245(4922):1066–1073

    Article  Google Scholar 

  • Rose MD, Fink GR (1987): KAR 1, a gene required for function of both intranuclear and extranuclear microtabules in yeast. Cell 48(6):1047–1060

    Article  Google Scholar 

  • Sandbaken M, Lupisella JA, DiDomenico B, Chakraburtty K (1990a): Protein synthesis in yeast. J Biol Chem 265(26):15838–15844

    Google Scholar 

  • Sandbaken M, Lupisella JA, DiDomenico B, Chakraburtty K (1990b): Isolation and characterization of the structural gene encoding elongation factor 3. Biochim Biophys Acta 1050(1–3):230–234

    Google Scholar 

  • Sandbaken MG, Culbertson MR (1988): Mutations in elongation factor EF-Iα affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae. Genetics 120(4):923–934

    Google Scholar 

  • Sang YC, Hong YC (1979): Opportunistic fungal infection among cancer patients — A ten year autopsy study. Am J Clin Pathol 72(2):617–621

    Google Scholar 

  • Saraste M, Sibbald PR, Wittenghofer A (1990): The P-Loop — A common motif in ATP- and GTP-binding proteins. Trends in Biochem 15(11):430–434

    Article  Google Scholar 

  • Scopp R, Snyder S, Sandbaken MG, Chakraburtty K(1991): Abst. Submitted for the XVth International Congress. Biochem . Jerusalem, Israel

    Google Scholar 

  • Sharp P, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988): Codon usage patterns in Escherichia coli, Bacillus subtilus, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: A review of the considerable within-species diversity. NAR 16(7): 8287–8281

    Google Scholar 

  • Shepherd JC, Walldorf U, Hug P, Gehring WJ (1989): Fruitflies with additional expression of the elongation factor EF-Iα live longer. Proc Natl Acad Sci USA 86(19):7520–7521

    Article  Google Scholar 

  • Singh A, Ursic D, Davies J (1979): Phenotype suppression and misreading in S. cerevisiae. Nature 277(5692):146–148

    Article  Google Scholar 

  • Skogerson L (1979): Separation and characterization of yeast elongation factors. In: Methods in Enzymology, Moldave K, Grossman L, eds. N.Y: Academic Press, 60:676–685

    Google Scholar 

  • Skogerson L, Wakatama E (1976): A ribosome-dependent GTPase from yeast distinct from elongation factor 2. Proc Nat Acad Sci USA 73(1):73–76

    Article  Google Scholar 

  • Song JM, Picologlou S, Grant CM, Firoozan M, Tuitie MF, Liebman S (1989): Elongation factor EF-lα gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cel Biol 9(10):4571–4575

    Google Scholar 

  • Thiagalingam S, Grossman L (1991): Both ATPase sites of Escherichia Coli UvrA have functional roles in nucleotide excision repair. J Biol Chem 266(17):11395–11403

    Google Scholar 

  • Thomas PJ, Shenbagamurthi P, Ysern X, Pedersen PL (1991): Cystic fibrosis: Transmembrane conductance regulator: Nucleotide binding to a synthetic peptide. Science 251(4993):555–557

    Article  Google Scholar 

  • Trachsel H (1991): Translation in eukaryotes. Caldwell, NJ: Telford Press

    Google Scholar 

  • Uritani M, Miyazaki M (1988): Role of the yeast peptide elongation factor 3 (EF-3) at the aa-tRNA binding step. J Biochem (Jap) 104(1):118–126

    Google Scholar 

  • Venema RC, Peters HI, Traugh JA (1991): Phosphorylation of elongation factor 1 (EF-1) and Valyl-tRNA synthetase by protein kinase C and stimualtion of EF-1 acttivity. J Biol Chem 266(19):12574–12580

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ(1982): Distantly related sequences in the α and ,β-subunits of ATP synthase, myosin, kinases, and other ATPrequiring enzymes and a common nucleotide binding fold. Embo J 1(8):945— 951

    Google Scholar 

  • Webster GC, Webster SL (1983): Decline in the synthesis of elongation factor 1 (EF-1) precedes the decreased synthesis of the total protein in aging in Drosophila Melanagaster. Mech Aging Dev 22(2):121–128

    Article  Google Scholar 

  • Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF(1988): Reading frame switch during elongation of protein synthesis. EMBO J 7(5):1503–1507

    Google Scholar 

  • Weissbach H, Pestka D, eds (1977): Molecular Mechanisms of Protein Synthesis. N.Y: Academic Press

    Google Scholar 

  • Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF (1989): Amplification of a gene related to mammalian mdr genes in drugresistant Plasmodium falciparumScience 244(4909):1184–1186

    Article  Google Scholar 

  • Wintermeyer W, Lill R, Robertson J (1990): InRole of tRNA exit site in ribosomal translation. Hill WE, Dahlberg A, Garett RA, Moore PB, Schlessinger D, Warner JR, eds. Washington D.C: ASM Press, pp 318–330

    Google Scholar 

  • Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J (1990): Identification of an actin-binding protein from dictyostelium as elongation factor la. Nature 347(6292):494–496

    Article  Google Scholar 

  • Ypma-Wong M, Fonzi W, Sypherd PS(1992): Fungal-specific translation elongation factor 3 gene present in pneumocystis carinii. NAR (submitted)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakraburtty, K. (1992). Elongation Factor 3 — A Unique Fungal Protein. In: Fernandes, P.B. (eds) New Approaches for Antifungal Drugs. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6729-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6729-9_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6731-2

  • Online ISBN: 978-1-4899-6729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics