Skip to main content

Role of Acetylated Gangliosides on Neuronal Migration and Axonal Outgrowth

  • Chapter
The Visual System from Genesis to Maturity

Abstract

The establishment of form and pattern within the nevous system is dependent on cellular interactions that are initiated early in development. These interactions regulate cell proliferation and differentiation, cell migration, axonal growth and guidance, target recognition, and synapse formation. Over the past decade the analysis of these sequential developmental steps has advanced from the descriptive to the molecular level. In large part, progress has resulted from a better appreciation of the way in which developing neurons respond to their environment. Considerable attention has been focused on proteins that are involved in these responses. Thus, the amino acid sequences and functional domains of many cell surface adhesive and repulsive proteins are now relatively well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J (1969): Autoradiographic and histological studies of postnatal neurogenesis: 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–294.

    Article  Google Scholar 

  • Altman J, Bayer SA (1985a): Embryonic development of the rat cerebellum: 1. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26.

    Article  Google Scholar 

  • Altman J, Bayer SA (1985b): Embryonic development of the rat cerebellum: 2. Translocation and regional distribution of the deep neurons. J Comp Neurol 231:27–41.

    Article  Google Scholar 

  • Altman J, Bayer SA (1985c): Embryonic development of the rat cerebellum: 3. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:42–65.

    Article  Google Scholar 

  • Bahr M, Vanselow J, Thano S (1989): Ability of adult rat ganglion cells to regrow axons in vitro can be influenced by fibroblast growth factor and gangliosides. Neurosci Lett 96:197–201.

    Article  Google Scholar 

  • Baier H, Bonhoeffer F (1991): Axon guidance in vitro by a target-derived cell membrane component. In: The Nerve Growth Cone, Letourneau PC, Kater SB, Macagno ER, eds. New York: Raven Press.

    Google Scholar 

  • Barbera AJ (1975): Adhesive recognition between developing retinal cells and the optic-tecta of the chick embryo. Dev Biol 46:167–191.

    Article  Google Scholar 

  • Barbera AJ, Marchase RB, Roth S (1973): Adhesive recognition and retino-tectal specificity. Proc Natl Acad Sci USA 70:2482–2486.

    Article  Google Scholar 

  • Begovac PC, Shur BD (1990): Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. J Cell Biol 110:461–470.

    Article  Google Scholar 

  • Blackburn CC, Swank-Hill P, Schnaar RL (1986): Gangliosides support neural retina cell adhesion. J Biol Chem 261:2873–2881.

    Google Scholar 

  • Blum AS, Barnstable CJ (1987): O-acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neural development. Proc Natl Acad Sci USA 84:8716–8720.

    Article  Google Scholar 

  • Bonafede DM, Missias AC, Constantine-Paton M (1989): Expression and synthesis of ganglioside 9-O-acetyl GD3 in mouse glioma subclones. Soc Neurosci Abstr 15:567.

    Google Scholar 

  • Bonhoeffer F, Gierer A (1984): How do retinal axons find their targets on the tectum? Trends Neurosci 7:378–381.

    Article  Google Scholar 

  • Cheresh DA (1987): Ganglioside involvement in tumor cell-substratum interactions. In: Development and Recognition of the Transformed Cell Greene MI, Hamaoka T, eds. New York: Plenum Press.

    Google Scholar 

  • Cheresh DA, Piersbacher MD, Herzig MA, Mujoo J (1986): Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102:688–696.

    Article  Google Scholar 

  • Cheresh DA, Pytela R, Pierschbacher MD, Klier FG, Ruoslahti E, Reisfeld RA (1987): An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exist in a divalent cation-dependent functional complex with the disialoganglioside GD2. J Cell Biol 105:1163–1172.

    Article  Google Scholar 

  • Cheresh DA, Varki AP, Varki NW, Stallcup WB, Levine J, Reisfeld RA (1984): A monoclonal antibody recognizes an O-acetylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259:7453–7459.

    Google Scholar 

  • Constantine-Paton M, Blum AS, Mendez-Otero R, Barnstable CJ (1986): A cell surface molecule distributed in a dorso-ventral gradient in the perinatal rat retina. Nature 324:459–462.

    Article  Google Scholar 

  • Drazba J, Pierce M, Lemmon V (1991): Studies of the developing chick retina using monoclonal antibody 8A2 that recognizes a novel set of gangliosides. Dev Biol 145:154–163.

    Article  Google Scholar 

  • Edmondson JC, Hatten ME (1987): Glial-guided granule neuron migration in vitro: A high-resolution time-lapse video microscopic study. J Neurosci 7:1928–1934.

    Google Scholar 

  • Eisenbarth GS, Walsh FS, Nirenberg M (1979): Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci USA 76:4913–4917.

    Article  Google Scholar 

  • Godement P, Bonhoeffer F (1989): Cross-species recognition of tectal cues by retinal fibers in vitro. Development 106:313–320.

    Google Scholar 

  • Grunwald GB, Fredman P, Magnani JL, Triesler D, Ginsburg V, Nirenberg M (1985): Monoclonal antibody 18B8 detects gangliosides associated with neuronal differentiation and synapse formation. Proc Natl Acad Sci USA 82:4008–4012.

    Article  Google Scholar 

  • Hatten ME, Liem RK, Mason CA (1984): Two forms of cerebellar glial cells interact differently with nervous system. J Cell Biol 90:622–630.

    Article  Google Scholar 

  • Kim JYH, Goldering JR, DeLorenzo RJ, Yu RK (1986): Gangliosides inhibit phospholipid-sensitive Ca2+-dependent kinase phosphorylation of rat myelin basic proteins. J Neurosci Res 15:159–166.

    Article  Google Scholar 

  • Kleinman HK, Martin GR, Fishman PH (1979): Ganglioside inhibition of fibronectinmediated cell adhesion to collgen. Proc Natl Acad Sci USA 76:3367–3371.

    Article  Google Scholar 

  • Levine JM, Beasly L, Stallcup WB (1984): The D.1.1 antigen: A cell surface marker for germinal cells of the central nervous system. J Neurosci 4:820–831.

    Google Scholar 

  • Marchase RB (1977): Biochemical investigation of retinotectal adhesive specificity. J Cell Biol 75:237–257.

    Article  Google Scholar 

  • McLoon SC (1991): A monoclonal antibody that distinguishes between temporal and nasal retinal axons. J Neurosci 11:1470–1477.

    Google Scholar 

  • Mendez-Otero R, Constantine-Paton M (1990): Granule cell induction of 9-O-acetyl gangliosides on cerebellar glia in microcultures. Dev Biol 138:400–409.

    Article  Google Scholar 

  • Mendez-Otero R, Schlosshauer B, Barnstable CJ, Constantine-Paton M (1988): A developmentally regulated antigen associated with neural cell and process migration. J Neurosci 8:564–579.

    Google Scholar 

  • Multani P, Bonafede DM, Yu RK, Constantine-Paton M (1988): Biochemical characterization of Jones immunoreactive gangliosides in rat. Soc Neurose Abstr 14:1016.

    Google Scholar 

  • Rabacchi SA, Neve RL, Drager UC (1990): A positional marker for the dorsal retina is homologous to the high-affinity laminin receptor. Development 109:521–531.

    Google Scholar 

  • Rakic P (1971): Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus J Comp Neurol 141:283–312.

    Article  Google Scholar 

  • Reinhardt-Maelicke S, Cleeves V, Kindler-Rohrborn A, Rajewsky MF (1990): Differential recognition of a set of O-acetylated gangliosides by monoclonal antibodies RBI3-2, Dl. 1, and Jones during rat brain development. Dev Brain Res 51:279–282.

    Article  Google Scholar 

  • Roth S, McGuire EJ, Roseman S (1971): Evidence for cell-surface glycosyltransferases: Their potential role in cell recognition. J Cell Biol 51:536–547.

    Article  Google Scholar 

  • Sabel B (1988): Anatomic mechanisms whereby ganglioside treatment induces brain repair. In: Pharmacological approaches to the Treatment of Brain and Spinal Cord Injury, Stein DG, Sabel B, eds. New York: Plenum Press.

    Google Scholar 

  • Schlosshauer B, Blum AS, Mendez-Otero R, Barnstable CJ, Constantine-Paton M (1988): Developmental regulation of ganglioside antigens recognized by the Jones antibody. J Neurosci 8:580–592.

    Google Scholar 

  • Schlosshauer B, Mendez-Otero R, Constantine-Paton M (1986): Developmental regulation of JONES gangliosides in the mammalian nervous sytem. Soc Neurosci Abstr 12:317.

    Google Scholar 

  • Schwartz M, Spirman N (1982): Sprouting from chick embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity purified antiganglioside antibodies. Proc Natl, Acad Sci USA 79:6080–6083.

    Article  Google Scholar 

  • Sloan SF, Koening E, Lemmon V (1989): Monoclonal antibody 8A2 triggers evacuation of growth cone contents and disto-proximal bulk redistribution of axoplasm in growing axons. Soc Neurosci Abstr 15:1027.

    Google Scholar 

  • Sparrow JR, Barnstable CJ (1988): A gradient molecule in rat retina: Expression of 9-O-acetyl GD3 in relation to cell type, developmental age, and GD3 ganglioside. J Neurosci Res 21:398–409.

    Article  Google Scholar 

  • Sparrow JR, McGuiness C, Schwartz M, Grafstein B (1984): Antibodies to gangliosides inhibit goldfish optic nerve regeneration in vivo. J Neurosci Res 12:233–243.

    Article  Google Scholar 

  • Sperry RW (1963): Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 5:703–710.

    Article  Google Scholar 

  • Stallcup WB (1988): Involvement of gangliosides and glycoprotein fibronectin receptors in cellular adhesion to fibronectin. Exp Cell Res 177:90–102.

    Article  Google Scholar 

  • Stallcup WB, Pytela R, Ruoslahti E (1989): A neuroectoderm-associated ganglioside participates in fibronectin receptor mediated adhesion of germinal cells to fibronectin. Dev Biol 132:212–229.

    Article  Google Scholar 

  • Trisler D, Collins F (1987): Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum. Science 237:1208–1209.

    Article  Google Scholar 

  • Trisler D, Schneider MD, Nirenberg M (1981): A topographic gradient of molecules in retina can be used to identify neuron position. Proc Natl Acad Sci USA 78:2145–2149.

    Article  Google Scholar 

  • Varki A, Hooshmand F, Diaz S, Varki NM, Hedrick SM (1991): Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell 65:65–74.

    Article  Google Scholar 

  • Vielmetter J, Stuermer CAO (1989): Goldfish retinal axons respond to position-specific properties of tectal cell membranes in vitro. Neuron 2:1331–1339.

    Article  Google Scholar 

  • Walter JS, Henke-Fahle S, Bonhoeffer F (1987): Avoidance of posterior tectal membranes by temporal retina axons. Development 101:909–914.

    Google Scholar 

  • Yamada KD, Critchley D, Fishman P, Mossi J (1983): Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells. Exp Cell Res 143:295–302.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendez-Otero, R., Schlosshauer, B., Constantine-Paton, M. (1992). Role of Acetylated Gangliosides on Neuronal Migration and Axonal Outgrowth. In: Lent, R. (eds) The Visual System from Genesis to Maturity. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6726-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6726-8_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6728-2

  • Online ISBN: 978-1-4899-6726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics