Differentiation of the GABAergic System in the Avian Retina: Control of Glutamic Acid Decarboxylase Expression by GABA

  • Fernando G. De Mello
  • Jan N. Hokoç
  • Ana L. M. Ventura
  • Patricia F. Gardino


Due to its histo-anatomical characteristics, the avian retina has been extensively used as a system to approach the basic principles of central nervous system (CNS) function and differentiation. Cells from the embryonic chick retina can be easily dissociated and cultured as dispersed or aggregated cells. Most, if not all, of retina biochemical markers differentiate properly in vitro, making this system useful to follow the differentiation of neurochemical properties of the tissue (Akagawa and Barnstable, 1987; Akagawa et al., 1987).


Amacrine Cell Plexiform Layer Inner Nuclear Layer Outer Plexiform Layer Inner Plexiform Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagawa K, Barnstable CJ (1987): Identification and characterization of cell types accumulating GABA in rat retina cultures using cell type specific monoclonal antibody. Brain Res 408:154–162.CrossRefGoogle Scholar
  2. Akagawa K, Hicks D, Barnstable CJ (1987): Histotypic organization and cell differentiation in rat retinal reaggregate cultures. Brain Res 437:298–308.CrossRefGoogle Scholar
  3. Bond RW, Jansen KR, Gottlieb DI (1988): Pattern of expression of glutamic acid decarboxylase mRNA in the developing rat brain. Proc Natl Acad Sci USA 85:3231–3234.CrossRefGoogle Scholar
  4. Brandon C (1985): Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Res 344:286–295.CrossRefGoogle Scholar
  5. Coulombre AJ (1955): Correlations of structural and biochemical changes in the developing retina of the chick. Am J Anat 96:153–189.CrossRefGoogle Scholar
  6. De Mello FG (1984): GABA-medited control of glutamate decarboxylase (GAD) in cell aggregate culture of chick embryo retina. Dev Brain Res 14:7–13.CrossRefGoogle Scholar
  7. De Mello FG, Bachrach U, Nirenberg M (1976): Ornithine and glutamic acid decarboxylase activities in developing chick retina. J Neurochem 27:847–851.CrossRefGoogle Scholar
  8. De Mello, FG, Hokoç JN, Ventura ALM, Gardino PF (1991): Glutamic acid decarboxylase of embryonic avian retina cells in culture: Regulation by-aminobutyric acid (GABA). Cell Mol Neurobiol 11:485–496.CrossRefGoogle Scholar
  9. De Mello MCF, Klein WL, De Mello FG (1988): L-glutamate evoked release of GABA from cultured avian retina cells does not require glutamate receptor activation. Brain Res 443:166–172.CrossRefGoogle Scholar
  10. Do Nascimento JL, De Mello FG (1985): Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of L-glutamate in cultured chick retina cells. J Neurochem 45:1820–1827.CrossRefGoogle Scholar
  11. Hokoç JN, Ventura ALM, Gardino PF, De Mello FG (1990): Developmental immunoreactivity for GABA and GAD in the avian retina: Possible alternative pathway for GABA synthesis. Brain Res 532:197–202.CrossRefGoogle Scholar
  12. Layer PG, Vollmer G (1982): Lucifer yellow stains displaced amacrine cells of the chicken retina during embryonic development. Neurosci Lett 31:979–984.CrossRefGoogle Scholar
  13. Morgan WW. (1985): GABA: A potential neurotransmitter in the retina. In: Retinal Transmitters and Modulators: Models for the Brain, Morgan WW, ed. Boca Raton, FL: CRC Press.Google Scholar
  14. Oertel WH, Schmechel DE, Tappaz ML, Kopin IJ (1981): Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6:2689–2700.CrossRefGoogle Scholar
  15. Sciler N, Al-Therib MJ (1974): Putrescine catabolism in mammalian brain. Biochem J 144:29–35.Google Scholar
  16. Spoerri PE (1988): Neurotrophic effects of GABA in culture of embryonic chick brain and retina. Synapse 2:11–22.CrossRefGoogle Scholar
  17. Vernier P, Julien JF, Rataboul P, Fourrier O, Feuerstein C, Mallet J (1988): Similar time changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in rat. J Neurochem 51:1375–1380.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Fernando G. De Mello
  • Jan N. Hokoç
  • Ana L. M. Ventura
  • Patricia F. Gardino

There are no affiliations available

Personalised recommendations