Skip to main content

Inactivation of Herpes Simplex Virus Ribonucleotide Reductase by Subunit Association Inhibitors: A Potential Antiviral Strategy

  • Chapter
The Search for Antiviral Drugs

Abstract

The herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) represent two members of a group of at least seven human herpesviruses that includes varicella zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and the more recently identified human herpesviruses 6 and 7 (HHV-6 and HHV-7). Infections caused by HSV are widespread in the human population and serological surveys have indicated that at least 9 out of 10 individuals in the United States have antibodies against these viruses (Fields, 1990). HSV-1 causes oral-labial, facial, and ocular infections, as well as more severe diseases such as encephalitis, whereas HSV-2 is more generally associated with genital herpes infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J, Beaulieu PL, Déziel R, DiMaio J, Grenier L, Lavallée P, Moss N (1991): Antiherpes pentapeptide derivatives having a substituted aspartic acid side chain. Eur Pat App 411,334.

    Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farewell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Séguin C, Tuffnell PS, Barrell BG (1984): DNA sequence and expression of the 895-8 Epstein-Barr virus genome. Nature (London) 310:207–211.

    Article  Google Scholar 

  • Bollinger JM, Edmondson DE, Huynh BH, Filley J, Norton JR, Stubbe J (1991): Mechanism of assembly of the tyrosyl radica1-dinuclear iron cluster cofactor of ribonucleotide reductase. Science 253:292–298.

    Article  Google Scholar 

  • Brandt CR, Kintner RT, Visalli RJ, Pumfrey AM, Grau DR (1991): The herpes simplex virus ribonucleotide reductase is required for ocular virulence. J Gen Virol 72:2043–2049.

    Article  Google Scholar 

  • Bushweiler JH, Bartlett PA (1991): Investigation of an octapeptide inhibitor of Escherichia coli ribonucleotide reductase by transferred nuclear Overhauser effect spectroscopy. Biochemistry 30:8144–8151.

    Article  Google Scholar 

  • Cameron JM, McDougall I, Marsden HS, Preston VG, Ryan MD, Subak-Sharpe JH (1988): Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol 67:2607–2612.

    Article  Google Scholar 

  • Climent I, Sjöberg B-M (1991): Carboxy1-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: Kinetic analysis of inhibition studies. Biochemistry 30:5164–5171.

    Article  Google Scholar 

  • Coen DM, Goldstein DJ, Weller SK (1989): Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob Agents Chemother 33:1395–1399.

    Article  Google Scholar 

  • Cohen EA, Gaudreau P, Brazeau P, Langelier Y (1986): Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature (London) 321:441–443.

    Article  Google Scholar 

  • Cohen EA, Paradis H, Gaudreau P, Brazeau P, Langelier Y (1990): Identification of viral polypeptides involved in pseudorabies virus ribonucleotide reductase activity. J Virol 61:2046–2049.

    Google Scholar 

  • Cosentino G, Lavallée P, Rakhit S, Plante R, Gaudette Y, Lawetz C, Whitehead PW, Duceppe J-S, Lépine-Frenette C, Dansereau N, Guilbeault C, Langelier Y, Gaudreau P, Thelander L, Guindon Y (1991): Specific inhibition of ribonucleotide reductases by peptides corresponding to the C-terminal of their second subunit. Biochem Cell Biol 69:79–83.

    Article  Google Scholar 

  • Davison AJ, Scott JE (1986): The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816.

    Article  Google Scholar 

  • Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS (1986): Specific inhibition of herpes ribonucleotide reductase by synthetic peptides. Nature (London) 321:439–441.

    Article  Google Scholar 

  • Erikson S, Sjöberg B-M (1989): Ribonucleotide reductase. In: Allosteric Enzymes, Hervé G, ed. Boca Raton, FL: CRC Press, pp 189–215.

    Google Scholar 

  • Fields, BN (1990): Virology. New York: Raven Press.

    Google Scholar 

  • Freifeld AG, Ostrove JM (1991): Resistance of viruses to antiviral drugs. Annu Rev Med 42:247–259.

    Article  Google Scholar 

  • Gaudreau P, Michaud J, Cohen EA, Langelier Y, Brazeau P (1987): Structure-activity studies on synthetic peptides inhibiting herpes simplex virus ribonucleotide reductase. J Biol Chem 262:12413–12416.

    Google Scholar 

  • Gaudreau P, Paradis H, Langelier Y, Brazeau P (1990): Synthesis and inhibitory potency of peptides corresponding to the subunit 2 C-terminal region of herpes virus ribonucleotide reductases. J Med Chem 33:723–730.

    Article  Google Scholar 

  • Goldstein DJ, Weller SK (1988): Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lac Z insertion mutant. J Virol 62:196–205.

    Google Scholar 

  • Idowu AD, Fraser-Smith EB, Poffenberger KL, Herman RC (1992): Deletion of the herpes simplex virus type 1 ribonucleotide reductase gene alters virulence and latency in vivo. Antiviral Res 17:145–156.

    Article  Google Scholar 

  • Jacobson JG, Leib DA, Goldstein DJ, Bogard CL, Schaffer PA, Weller SK, Coen DM (1989): A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283.

    Article  Google Scholar 

  • Lagacé L, Liuzzi M, Thibeault D, Dô F, Chafouleas JG, Gauthier J, Plante R, Déziel R, Guindon Y (1991): Specificity of binding of HSV ribonucleotide reductase inhibitors with the large subunit of the enzyme. Program 16th Int Herpes Virus Workshop, Pacific Grove, California, p 66.

    Google Scholar 

  • Liuzzi M, Lapierre F, Ingemarson R, Lagacé L, Massie B, Fleurent J, Thelander L, Chafouleas JG (1991): Evaluation of subunit association utilizing recombinant R1 and R2 of HSV ribonucleotide reductase. Program 16th Int Herpes Virus Workshop, Pacific Grove, California, p 72.

    Google Scholar 

  • Liuzzi M, Scouten E, Ingemarson R (1992): Inhibition of herpes simplex ribonucleotide reductase by synthetic nonpeptides: A potential antiviral therapy. In: Innovations in Antiviral Development and the Detection of Virus Infections, Walsh L, Block TM, Crowell R, Jungkind DL, eds., New York: Plenum Press, pp 129–138.

    Chapter  Google Scholar 

  • Lobe DC, Spector T, Ellis MN (1991): Synergistic topical therapy by acyclovir and A1110U for herpes simplex virus induced zosteriform rash in mice. Antiviral Res 15:87–100.

    Article  Google Scholar 

  • McClements W, Yamamaka G, Garsky V, Perry H, Bacchetti S, Colonno R, Stein RB (1988): Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162:270–273.

    Article  Google Scholar 

  • Nordlund PI, Sjöberg B-M, Eklund H (1990): Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature (London) 345:593–598.

    Article  Google Scholar 

  • Paradis H, Gaudreau P, Brazeau P, Langelier Y (1988): Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxy terminus of its subunit 2: Specific binding of a photoaffinity analog, [4′-azido-Phe6] HSV H2-(6-15), to subunit 1. J Biol Chem 263:16045–16050.

    Google Scholar 

  • Paradis H, Langelier Y, Michaud J, Brazeau P, Gaudreau P (1991): Studies on in vitro proteolytic sensitivity of peptides inhibiting herpes simplex virus ribonucleotide reductase lead to discovery of a stable and potent inhibitor. Int J Pept Protein Res 37:72–79.

    Article  Google Scholar 

  • Parker NJ, Begley CG, Fox RM (1991): Human Ml subunit of ribonucleotide reductase: cDNA sequence and expression in stimulated lymphocytes. Nucleic Acids Res 19:3741.

    Article  Google Scholar 

  • Reardon JE Spector T (1991): Acyclovir: Mechanism of antiviral action and potentiation by ribonucleotide reductase inhibitors. Adv Pharmacol 22:1–27.

    Article  Google Scholar 

  • Reichard P (1988): Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374.

    Article  Google Scholar 

  • Shipman C Jr, Smith SH, Drach JC, Klayman DL (1986): Thiosemicarbazones of 2-acetylpyridine, 2-acetylquinoline, 1-acetylquinoline, and related compounds as inhibitors of herpes simplex virus in vitro and in a cutaneous herpes guinea pig model. Antiviral Res 6:197–222.

    Article  Google Scholar 

  • Spector T (1989): Ribonucleotide reductase encoded by herpesviruses: Inhibitors and chemotherapeutic considerations. In: International Encyclopedia of Pharmacology and Therapeutics, Cory JG, Cory AH, eds. Elmsford, NY: Pergamon Press, pp 235–243.

    Google Scholar 

  • Spector T, Averett DR, Nelson DJ, Lambe CV, Morrison RW, St Clair MH, Furman PA (1985): Potentiation of antiherpetic activity of acyclovir by ribonucleotide reductase inhibition. Proc Natl Acad Sci USA 82:4254–4257.

    Article  Google Scholar 

  • Stevens JG (1989): Human herpesviruses: A consideration of the latent state. Microbiol Rev 53:318–332.

    Google Scholar 

  • Stubbe J (1990): Ribonucleotide reductases: Amazing and confusing. J Biol Chem 265:5329–5332.

    Google Scholar 

  • Stubbe J, Ator M, Krenitsky T (1983): Mechanism of ribonucleotide diphosphate reductase from Escherichia coli. Evidence for 3′-C—H bond cleavage. J Biol Chem 258:1625–1630.

    Google Scholar 

  • Telford E, Owsianka A, Marsden HS (1990): Stability of the herpesvirus ribonucleotide reductase-inhibiting nonapeptide YAGAWNDL in extracts of HSV 1-infected cells. Antiviral Chem Chemother 1:223–226.

    Google Scholar 

  • Thelander M, Thelander L (1989): Molecular cloning and expression of the functional gene encoding the M2 subunit of mouse ribonucleotide reductase: A new dominant marker gene. EMBO J 8:2475–2479.

    Google Scholar 

  • Turk SR, Shipman C Jr, Drach JC (1986): Selective inhibition of herpes simplex virus ribonucleotide diphosphate reductase by derivatives of 2-acetylpyridine thiosemicarbazone. Biochem Pharmacol 35:1539–1545.

    Article  Google Scholar 

  • Yamada Y, Kimura H, Morishima T, Daikoku T, Maeno K, Nishiyama Y (1991a): The pathogenicity of ribonucleotide reductase null mutants of herpes simplex virus type 1 in mice. J Infect Dis 164:1091–1097.

    Article  Google Scholar 

  • Yamada Y, Yamamoto N, Daikoku T, Nishiyama Y (1991b): Susceptibility of a herpes simplex virus ribonucleotide reductase null mutant to deoxyribonucleosides and antiviral nucleoside analogs. Microbiol Immunol 35:681–686.

    Google Scholar 

  • Yang FD, Spanevello RA, Celiker I, Hirschmann R, Rubin H, Cooperman BS (1990): The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit. FEBS Lett 272:61–64.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liuzzi, M., Déziel, R. (1993). Inactivation of Herpes Simplex Virus Ribonucleotide Reductase by Subunit Association Inhibitors: A Potential Antiviral Strategy. In: Adams, J., Merluzzi, V.J. (eds) The Search for Antiviral Drugs. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6718-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6718-3_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6720-6

  • Online ISBN: 978-1-4899-6718-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics