Skip to main content

Hippocampal, Subicular, and Entorhinal Afferents and Synaptic Integration in Rodent Cingulate Cortex

  • Chapter
Neurobiology of Cingulate Cortex and Limbic Thalamus

Abstract

There is now compelling evidence, based on studies in many species and laboratories, that cingulate cortex is one of the important targets of the hippocampal formation. Source structures include the hippocampus, subicular complex, and entorhinal cortex. Using new anatomical tract tracing techniques, several reports published in the late 1970s added considerably to our understanding of hippocampal formation outputs and showed that several tenets of hippocampal organization required revision. For years, the principal hippocampal outputs were regarded as subcortical projections via the fornix system. The subiculum, though well described by Lorente de Nó using the Golgi technique (Lorente de Nó, 1933), was usually ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger BE, Nicoll RA (1982): Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J Physiol (London) 328:105–123

    Google Scholar 

  • American Psychiatric Association (1987): Diagnostic and Statistical Manual of Mental Disorders, 3rd rev ed. Washington, DC: American Psychiatric Association

    Google Scholar 

  • Andersen P, Bland BH, Dudar JD (1973): Organization of the hippocampal output. Exp Brain Res 17:152–178

    Google Scholar 

  • Andree TH, Gottesfeld Z, DeFrance JF, Sikes RW, Enna SJ (1983): Evidence for cholinergic muscarinic receptors on mediodorsal thalamic projections to the anterior cingulate cortex. Neurosci Lett 40:99–103

    Google Scholar 

  • Ashwood TJ, Lancaster B, Wheal HV (1984): In vivo and in vitro studies on putative interneurones in the rat hippocampus: Possible mediators of feed-forward inhibition. Brain Res 293:279–291

    Google Scholar 

  • Audinat E, Hermel J-M, Crépel F (1989): Neuro-tensin-induced excitation of neurons of the rat’s frontal cortex studied intracellularly in vitro. Exp Brain Res 78:358–368

    Google Scholar 

  • Brothers LA, Finch DM (1985): Physiological evidence for an excitatory pathway from ento-rhinal cortex to amygdala in the rat. Brain Res 359:10–20

    Google Scholar 

  • Buzsáki G (1984): Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22:131–153

    Google Scholar 

  • Buzsáki G, Eideiberg E (1982): Direct afferent excitation and long-term potentiation of hippocampal interneurons. J Neurophysiol 48: 597–607

    Google Scholar 

  • Coyle P (1969): Cat parahippocampal unit discharge patterns during limbic stimulation. Brain Res 15:175–183

    Google Scholar 

  • Donovan MK, Wyss JM (1983): Evidence for some collateralization between cortical and diencephalic efferent axons of the rat subicular cortex. Brain Res 259:181–192

    Google Scholar 

  • Eccles JC (1968): The Physiology of Nerve Cells. Baltimore, MD: Johns Hopkins University Press

    Google Scholar 

  • Emson PC, Goedert M, Mantyh PW (1985): Neurotensin-containing neurons. In: Handbook of Chemical Neuroanatomy, Björklund A, Hökfelt T, eds. Amsterdam: Elsevier, Vol 4, Part 1, pp 355–405

    Google Scholar 

  • Ferino F, Thierry AM, Glowinski J (1987): Anatomical and physiological evidence for a direct projection from Amnion’s horn to the medial prefrontal cortex in the rat. Exp Brain Res 65:421–426

    Google Scholar 

  • Finch DM, Babb TL (1977): Response decrement in a hippocampal basket cell. Brain Res 130:354–359

    Google Scholar 

  • Finch DM, Babb TL (1980): Neurophysiology of the caudally directed hippocampal efferent system in the rat: Projections to the subicular complex. Brain Res 197:11–26

    Google Scholar 

  • Finch DM, Babb TL (1981): Demonstration of caudally directed hippocampal efferents by intracellular injection of horseradish peroxidase. Brain Res 214:405–410

    Google Scholar 

  • Finch DM, Derian EL, Babb TL (1984a): Afferents fibers to rat cingulate cortex. Exp Neurol 83:468–485

    Google Scholar 

  • Finch DM, Derian EL, Babb TL (1984b): Excitatory projection of the rat subicular complex to the cingulate cortex and synaptic integration with thalamic afferents. Brain Res 301:25–37

    Google Scholar 

  • Finch DM, Nowlin NL, Babb TL (1983): Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res 271:201–216

    Google Scholar 

  • Finch DM, Tan AM (1991): Convergence of projections from the rat hippocampal formation, thalamus, and basal forebrain onto neurons of the anterior cingulate cortex: An in vivo physiological study. Soc Neurosci Abstr 17:128

    Google Scholar 

  • Finch DM, Tan AM, Isokawa-Akesson M (1988): Feedforward inhibition of the rat entorhinal cortex and subicular complex. J Neurosci 8:2213–2226

    Google Scholar 

  • Finch DM, Wong EE, Derian EL, Chen X-H, Nowlin-Finch NL, Brothers LA (1986): Neurophysiology of limbic system pathways in the rat: Projections from the amygdala to the entorhinal cortex. Brain Res 370:273–284

    Google Scholar 

  • Gigg J, Tan AM, Finch DM (1992): Glutama-tergic excitatory responses of anterior cingulate neurons to stimulation of the mediodorsal thalamus and their regulation by GABA: An in vivo iontophoretic study. Cereb Cortex 2:477–484

    Google Scholar 

  • Gloor P (1986): Role of the human limbic system in perception, memory, and affect: Lessons from temporal lobe epilepsy. In: The Limbic System Functional Organization and Clinical Disorders, Doane BK, Livingston KE, eds. New York: Raven Press, pp 159–169

    Google Scholar 

  • Goddard GV, Mclntyre DC, Leech CK (1969): A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Google Scholar 

  • Grebb JA, Cancro R (1989): Schizophrenia clinical features. In: Comprehensive Textbook of Psychiatry, Kaplan HI, Sadock BJ, eds. Baltimore, MD: Williams & Wilkins, 5th ed, Vol 1, pp. 757–777

    Google Scholar 

  • Haberly LB, Bower JM (1984): Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques. J Neurophysiol 51:90–112

    Google Scholar 

  • Halgren E, Walter RD, Cherlow DG, Crandall PH (1978): Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 101:83–117

    Google Scholar 

  • Hara Y, Shiosaka S, Senba E, Sakanaka M, Inagaki S, Takagi H, Kawai Y, Takatsuki K, Matsuzaki T, Tohyama M (1982): Ontogeny of the neurotensin-containing system of the rat immunocytochemical analysis. 1. Forebrain and diencephalon. J Comp Neurol 200:177–195

    Google Scholar 

  • Hjorth-Simonsen A (1971): Hippocampal effer-ents to the ipsilateral entorhinal area: An experimental study in the rat. J Comp Neurol 142:417–438

    Google Scholar 

  • Hjorth-Simonsen A (1973): Some intrinsic connections of the hippocampus: An experimental analysis. J Comp Neurol 147:145–162

    Google Scholar 

  • Houser CR, Hendry SHC, Jones EG, Vaughn JE (1983): Morphological diversity of immunocy-tochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol 12:617–638

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984): Alzheimer’s disease cell specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Google Scholar 

  • Ingham CA, Bolam JP, Wainer BH, Smith AD (1985): A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J Comp Neurol 239:176–192

    Google Scholar 

  • Ino T, Matsuzaki S, Shinonaga Y, Ohishi H, Ogawa-Meguro R, Mizuno N (1990): Direct projections of non-pyramidal neurons of Amnion’s horn to the amygdala and the entorhinal cortex. Neurosci Lett 115:161–166

    Google Scholar 

  • Iriki A, Pavlides C, Keller A, Asanuma H (1991): Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical afferents. J Neurophysiol 65:1435–1441

    Google Scholar 

  • Jay TM, Glowinski J, Thierry A-M (1989): Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res 505:337–340

    Google Scholar 

  • Jay TM, Thierry AM, Glowinski J (1991): AMPA receptors are involved in excitatory responses of prefrontal cortical cells induced by stimulation of the hippocampal formation. Soc Neurosci Abstr 17:1038

    Google Scholar 

  • Jay TM, Witter MP (1992): Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Google Scholar 

  • Johnston MV, McKinney M, Coyle JT (1981): Neocortical cholinergic innervation a description of extrinsic and intrinsic components in the rat. Exp Brain Res 43:159–172

    Google Scholar 

  • Kaneko T, Mizuno N (1988): Immunohistochem-ical study of glutaminase-containing neurons in the cerebral cortex and thalamus of the rat. J Comp Neurol 267:590–602

    Google Scholar 

  • Karlsson G, Olpe J-R (1989): Late inhibitory postsynaptic potentials in rat prefrontal cortex may be mediated by GABAB receptors. Experi-entia 45:157–158

    Google Scholar 

  • Kisvarday ZF, Cowey A, Smith AD, Somogyi P (1989): Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey. J Neurosci 9:667–682

    Google Scholar 

  • Kiyama H, Shiosaka S, Sakamoto N, Michel J-P, Pearson J, Tohyama M (1986): A neurotensin-immunoreactive pathway from the subiculum to the mammillary body in the rat. Brain Res 375:357–359

    Google Scholar 

  • Köhler C (1984): Morphological details of the projection from the presubiculum to the entorhinal area as shown with the novel PHA-L immunohistochemical tracing method in the rat. Neurosci Lett 45:285–290

    Google Scholar 

  • König JFR, Klippel RA (1967): The Rat Brain. New York: Robert E. Krieger

    Google Scholar 

  • Kovelman JA, Scheibel AB (1984): A neurohisto-logical correlate of schizophrenia. Biol Psychiatry 19:1601–1622

    Google Scholar 

  • Krettek JE, Price JL (1977): Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    Google Scholar 

  • Kriegstein AR, Connors BW (1986): Cellular physiology of the turtle cortex: Synaptic properties and intrinsic circuitry. J Neurosci 6:178–191

    Google Scholar 

  • Kubie JL, Ranck JB Jr (1983): Sensory-behavioral correlates in individual hippocampus neurons in three situations space and context. In: Neurobiology of the Hippocampus, Seifert W, ed. London: London University Press, pp 433–447

    Google Scholar 

  • Lacaille J-C, Mueller AL, Kunkel DD, Schwartzkroin PA (1987): Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: Electrophysiology and morphology. J Neurosci 7:1979–1993

    Google Scholar 

  • Lacaille J-C, Williams S (1990): Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro. Neuroscience 36:349–359

    Google Scholar 

  • Laroche S, Jay TM, Thierry A-M (1990): Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/ subicular region. Neurosci Lett 114:184–190

    Google Scholar 

  • Larson-Prior LJ, Ulinski PS, Slater NT (1991): Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex. J Neurophysiol 66:293–306

    Google Scholar 

  • Lorente de Nó R(1933): Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438

    Google Scholar 

  • Loughlin SE, Fallon JH (1984): Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization. Neuroscience 11:425–435

    Google Scholar 

  • Markowska AL, Olton DS, Murray EA, Gaffan D (1989): A comparative analysis of the role of fornix and cingulate cortex in memory rats. Exp Brain Res 74:187–201

    Google Scholar 

  • Markram H, Segal M (1990): Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol (London) 427:381–393

    Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985): Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    Google Scholar 

  • McCormick DA, Prince DA (1985): Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc Natl Acad Sci USA 82:6344–6348

    Google Scholar 

  • McKinney M, Coyle JT, Hedreen JC (1983): Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J Comp Neurol 217:103–121

    Google Scholar 

  • McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989): Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp Brain Res 76:485–496

    Google Scholar 

  • Meibach RC, Siegel A (1977a): Efferent connections of the hippocampal formation in the rat. Brain Res 124:197–224

    Google Scholar 

  • Meibach RC, Siegel A (1977b): Subicular projections to the posterior cingulate cortex in rats. Exp Neurol 57:264–274

    Google Scholar 

  • Mello LE, Tan AM, Finch DM (1992): GA-BAergic synaptic transmission in projections from the basal forebrain and hippocampal formation to the amygdala: An in vivo iontopho-retic study. Brain Res 587:41–48

    Google Scholar 

  • Mesulam M-M, Mufson EJ, Wainer BH, Levey Al (1983): Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chl-Ch6). Neuroscience 10:1185–1201

    Google Scholar 

  • Mishkin M (1982): A memory system in the monkey. Philos R Soc London, Ser B 298:85–95

    Google Scholar 

  • Murray EA, Davidson M, Gaffan D, Olton DS, Suomi S (1989): Effects of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys. Exp Brain Res 74:173–186

    Google Scholar 

  • Nicoll RA, Newberry NR (1984): A possible postsynaptic inhibitory action for GABAB receptors on hippocampal pyramidal cells. Neuropharmacology 23:849–850

    Google Scholar 

  • O’Keefe J (1983): Spatial memory within and without the hippocampal system. In: Neurobiology of the Hippocampus, Seifert W, ed. London: Academic Press, pp 375–403

    Google Scholar 

  • Paxinos G, Watson C (1986): The Rat Brain in Stereotaxic Coordinates. Orlando, FL: Academic Press

    Google Scholar 

  • Penfield W, Jasper H (1954): Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown

    Google Scholar 

  • Penit-Soria J, Audinat E, Crepel F (1987): Excitation of rat prefrontal cortical neurons by dopamine: An in vitro electrophysiological study. Brain Res 425:263–274

    Google Scholar 

  • Ribak CE (1978): Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J Neu-rocytol 7:461–478

    Google Scholar 

  • Roberts GW, Bruton CJ (1990): Notes from the graveyard: Neuropathology and schizophrenia. Neuropathol Appl Neurobiol 16:3–16

    Google Scholar 

  • Roberts GW, Crow TJ, Polak JM (1981): Neurotensin: First report of a cortical pathway. Peptides (NY) 2(Suppl l):37–43

    Google Scholar 

  • Roberts GW, Woodhams PL, Polak JM, Crow TJ (1984): Distribution of neuropeptides in the limbic system of the rat: The hippocampus. Neuroscience 11:35–77

    Google Scholar 

  • Rosene DL, Van Hoesen GW (1977): Hippo-campal efferents reach widespread areas of cerebral cortex and amygdala in the Rhesus monkey. Science 198:315–317

    Google Scholar 

  • Ruit KG, Neafsey EJ (1990): Hippocampal input to a “visceral motor” corticobulbar pathway: An anatomical and electrophysiological study in the rat. Exp Brain Res 82:606–616

    Google Scholar 

  • Sakamoto N, Michel J-P, Kiyama H, Tohyama M, Kopp N, Pearson J (1986): Neurotensin immunoreactivity in the human cingulate gyrus, hippocampal subiculum and mammil-lary bodies. Its potential role in memory processing. Brain Res 375:351–356

    Google Scholar 

  • Saper CB (1984): Organization of cerebral cortical afferent systems in the rat. I. Magnocel-lular basal nucleus. J Comp Neurol 222:313–342

    Google Scholar 

  • Sarter M, Markowitsch HJ (1983): Convergence of basolateral amygdaloid and mediodorsal thalamic projections in different areas of the frontal cortex in the rat. Brain Res Bull 10:607–622

    Google Scholar 

  • Sarter M, Markowitsch HJ (1985): Convergence of intra- and interhemispheric cortical afferents: Lack of collateralization and evidence for a subrhinal cell group projecting hetero-topically. J Comp Neurol 236:283–296

    Google Scholar 

  • Sato M, Lee Y, Zhang JH, Shiosaka S, Noguchi K, Morita Y, Tohyama M (1990): Different ontogenetic profiles of cells expressing prepro-neurotensin/neuromedin N mRNA in the rat posterior cingulate cortex and the hippocampal formation. Dev Brain Res 54:249–255

    Google Scholar 

  • Schwartzkroin PA, Mathers LH (1978): Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 157:1–10

    Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989): Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    Google Scholar 

  • Shi W-X, Bunney BS (1991): Neurotensin modulates autoreceptor mediated dopamine effects on midbrain dopamine cell activity. Brain Res 543:315–321

    Google Scholar 

  • Shipley MT (1975): The topographical and laminar organization of the presubiculum’s projection to the ipsi- and contralateral entorhinal cortex in the guinea pig. J Comp Neurol 160:127–146

    Google Scholar 

  • Sikes RW, DeFrance JF (1985): Cholinergic modulation of mediodorsal thalamic input into cingulate cortex. Brain Res 345:327–331

    Google Scholar 

  • Sørensen KE (1985a): The connections of the hippocampal region. Acta Neurol Scand pp 550–560

    Google Scholar 

  • Stfrensen KE (1985b): Projections of the entorhinal area to the striatum, nucleus accumbens, and cerebral cortex in the guinea pig. J Comp Neurol 238:308–322

    Google Scholar 

  • Squire LR (1987): Memory and Brain. Oxford: Oxford University Press

    Google Scholar 

  • Steward O, Scoville SA (1976): Cells of origin of entorhinal cortical Afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370

    Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990): Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794

    Google Scholar 

  • Sutherland RJ, Whishaw IQ, Kolb B (1988): Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872

    Google Scholar 

  • Swanson LW (1981): A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217:150–154

    Google Scholar 

  • Swanson LW, Cowan WM (1977): An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    Google Scholar 

  • Swanson LW, Köhler C (1986): Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6:3010–3023

    Google Scholar 

  • Swanson LW, Wyss JM, Cowan WM (1978): An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181:681–716

    Google Scholar 

  • Tamamaki N, Abe K, Nojyo Y (1987): Columnar organization in the subiculum formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus. Brain Res 412:156–160

    Google Scholar 

  • Tamamaki N, Nojyo Y (1990): Disposition of the slab-like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus. J Comp Neurol 291:509–519

    Google Scholar 

  • Thierry AM, Deniau JM, Herve D, Chevalier G (1980): Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res 201:210–214

    Google Scholar 

  • Thierry AM, Le Douarin C, Penit J, Ferron A, Glowinski J (1986): Variation in the ability of neuroleptics to block the inhibitory influences of dopaminergic neurons on the activity of cells in the rat prefrontal cortex. Brain Res Bull 16:155–160

    Google Scholar 

  • Thompson LT, Best PJ (1989): Place cells and silent cells in the hippocampus of freely-behaving rats. J Neurosci 9:2382–2390

    Google Scholar 

  • Trimble MR (1991): The Psychoses of Epilepsy. New York: Raven Press

    Google Scholar 

  • van Groen T, Wyss JM (1990a): Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593–606

    Google Scholar 

  • van Groen T, Wyss JM (1990b): Extrinsic projections from area CA1 of the rat hippocampus olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302:515–528

    Google Scholar 

  • van Groen T, Wyss JM (1990c): The postsubic-ular cortex in the rat: Characterization of the fourth region of the subicular cortex and its connections. Brain Res 529:165–177

    Google Scholar 

  • Vogt BA, Gorman ALF (1982): Responses of cortical neurons to stimulation of corpus cal-losum in vitro. J Neurophysiol 48:1257–1273

    Google Scholar 

  • Vogt BA, Miller MW (1983): Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216:192–210

    Google Scholar 

  • Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex areas 32, 24, and 29. J Comp Neurol 195:603–625

    Google Scholar 

  • Wachtel H, Turski L (1990): Glutamate: A new target in schizophrenia? Trends Pharmacol Sci 11:219–220

    Google Scholar 

  • White TD, Tan AM, Finch DM (1990): Functional reciprocal connections of the rat ento-rhinal cortex and subicular complex with the medial frontal cortex: An in vivo intracellular study. Brain Res 533:95–106

    Google Scholar 

  • White TD, Tan AM, Finch DM (1991): Functional connections of the rat medial cortex and basal forebrain: An in vivo intracellular study. Neuroscience 44:571–583

    Google Scholar 

  • Williams PJ, MacVicar BA, Pittman QJ (1989): A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience 31:673–681

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989): Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Google Scholar 

  • Young WS III, Kuhar MJ (1981): Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res 206:273–285

    Google Scholar 

  • Young WS III, Uhl GR, Kuhar MJ (1978): Iontophoresis of neurotensin in the area of the locus coeruleus. Brain Res 150:431–435

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finch, D.M. (1993). Hippocampal, Subicular, and Entorhinal Afferents and Synaptic Integration in Rodent Cingulate Cortex. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics