Skip to main content

Abstract

The cerebral cortex represents the dominating structure of the human brain. It is divided into more or less uniform isocortex (proisocortex and isocortex sensu stricto) and heterogeneous allocortex (allocortex sensu stricto and periallocortex; Braak, 1980; Zilles, 1990). Isocortical fields account for about 95% of the total cortical surface area. Allocortex is small in comparison and comprises among other territories the hippocampal formation and the entorhinal region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral DG, Cowan WM (1980): Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189: 573–591

    Google Scholar 

  • Amaral DG, Insausti R (1990): Hippocampal formation. In: The Human Nervous System, Paxinos G, ed. San Diego: Academic Press, pp 711–756

    Google Scholar 

  • Armstrong E (1986): Enlarged limbic structures in the human brain: The anterior thalamus and medial mamillary body. Brain Res 362: 394–397

    Google Scholar 

  • Armstrong E (1990): Limbic thalamus: Anterior and mediodorsal nuclei. In: The Human Nervous System, Paxinos G, ed. San Diego: Academic Press, pp 469–482

    Google Scholar 

  • Armstrong E, Zilles K, Schlaug G, Schleicher A (1986): Comparative aspects of the primate posterior cingulate cortex. J Comp Neurol 253: 539–548

    Google Scholar 

  • Bielschowsky M (1911): Zur Kenntnis der Alzheimerschen Krankheit (präsenilen Demenz mit Herdsymptomen). J Psychol Neurol 18: 273–292

    Google Scholar 

  • Braak H (1978): The pigment architecture of the human telencephalic cortex. III. Regio praesubicularis. Cell Tissue Res 190: 509–523

    Google Scholar 

  • Braak H (1979): Pigment architecture of the human telencephalic cortex. IV. Regio retrosplenialis. Cell Tissue Res 204: 431–440

    Google Scholar 

  • Braak H (1980): Architectonics of the Human Telencephalic Cortex. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  • Braak H, Braak E (1984): Neuronal types in the neocortex-dependent lateral territory of the human thalamus. A Golgi-pigment study. Anat Embryol 169: 61–72

    Google Scholar 

  • Braak H, Braak E (1985): On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68: 325–332

    Google Scholar 

  • Braak H, Braak E (1987): The hypothalamus of the human adult: Chiasmatic region. Anat Embryol 176: 315–330

    Google Scholar 

  • Braak H, Braak E (1988): Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14: 39–44

    Google Scholar 

  • Braak H, Braak E (1990a): Alzheimer’s disease: Amyloid deposits and neurofibrillary changes in the striatum. J Neuropathol Exp Neurol 49: 215–224

    Google Scholar 

  • Braak H, Braak E (1990b): Cognitive impairment in Parkinson’s disease: Amyloid plaques, neurofibrillary tangles and neuropil threads in the cerebral cortex. J Neural Transm (P-D Sect) 2: 45–57

    Google Scholar 

  • Braak H, Braak E (1990c): Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia. Acta Neuropathol 80: 479–486

    Google Scholar 

  • Braak H, Braak E (1991a): Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81: 261–268

    Google Scholar 

  • Braak H, Braak E (1991b): Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1: 213–216

    Google Scholar 

  • Braak H, Braak E (1991c): Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Google Scholar 

  • Braak H, Braak E (1992a): Anatomy of the human hypothalamus (chiasmatic and tuberal region). Prog Brain Res 93: 3–16

    Google Scholar 

  • Braak H, Braak E (1992b): Alzheimer-related pathological changes in the retrosplenial region and adjoining areas. Neurodegeneration 1: 53–57

    Google Scholar 

  • Braak H, Braak E, Bohl J, Lang W (1989a): Alzheimer’s disease: Amyloid plaques in the cerebellum. J Neurol Sci 93: 277–287

    Google Scholar 

  • Braak H, Braak E, Grundke-Iqbal I, Iqbal K (1986): Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: A third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65: 351–355

    Google Scholar 

  • Braak H, Braak E, Kalus P (1989b): Alzheimer’s disease: Areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77: 494–506

    Google Scholar 

  • Braak H, Braak E, Ohm T, Bohl J (1989c): Alzheimer’s disease: Mismatch between amyloid plaques and neuritic plaques. Neurosci Lett 103: 24–28

    Google Scholar 

  • Braak H, Weinel U (1985): The percentage of projection neurons and local circuit neurons in different nuclei of the human thalamus. J Hirnforsch 26: 525–530

    Google Scholar 

  • Brodmann K (1909): Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth

    Google Scholar 

  • Brun A, Gustafson L (1978): Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr 226: 79–93

    Google Scholar 

  • Campbell SK, Switzer RC, Martin TL (1987): Alzheimer’s plaques and tangles: A controlled and enhanced silver staining method. Soc Neurosci Abstr 13: 678

    Google Scholar 

  • Castano EM, Frangione B (1988): Biology of disease. Human amyloidosis, Alzheimer’s disease and related disorders. Lab Invest 58: 122–132

    Google Scholar 

  • Cowan WM, Powell TPS (1954): An experimental study of the relation between the medial mamillary nucleus and the cingulate cortex. Proc R Soc London, Ser B 143: 114–125

    Google Scholar 

  • Cruce JAF (1975): An autoradiographic study of the projections of the mamillothalamic tract in the rat. Brain Res 85: 211–219

    Google Scholar 

  • Damasio H, Damasio AR (1989): Lesion Analysis in Neuropsychology. New York, Oxford: Oxford University Press.

    Google Scholar 

  • Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL (1988): A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: Prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38: 1688–1693

    Google Scholar 

  • Fischer O (1910): Die presbyophrene Demenz, deren anatomische Grundlage und klinische Abgrenzung. Z Gesamte Neurol Psychiatr 3: 371–471

    Google Scholar 

  • Gabriel M, Lambert RW, Foster K, Orona E, Sparenborg S, Majorca RR (1983): Anterior thalamic lesions and neuronal activity in the cingulate and retrosplenial cortices during discriminative avoidance behavior in rabbits. Behav Neurosci 97: 675–696

    Google Scholar 

  • Gallyas F (1971): Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19: 1–8

    Google Scholar 

  • Gambetti P, Shecket G, Ghetti B, Hirano A, Dahl D (1983): Neurofibrillary changes in human brain. An immunocytochemical study with neurofilament antiserum. J Neuropathol Exp Neurol 42: 69–79

    Google Scholar 

  • Gambetti P, Tabaton M, Cammarata S, Morandi A, Schaetzle B, Wicker N, Perry G, Autilio-Gambetti L (1990): Neurofibrillary tangles, neuropil threads and neuritic plaques in Alzheimer’s disease: Are these lesions interrelated? In: Molecular Biology and Genetics of Alzheimer’s Disease, Miyatake T, Selkoe DJ, Ihara Y, eds. Amsterdam: Elsevier, pp 57–66

    Google Scholar 

  • Glenner GG, Murphy MA (1989): Amyloidosis of the nervous system. J Neurol Sci 94: 1–28

    Google Scholar 

  • GrĂĽnthal E (1930): Die pathologische Anatomie der senilen Demenz und der Alzheimerschen Krankheit. In: Handbuch der Geisteskrankheiten, Bumke O, ed. Berlin: Springer-Verlag, Vol 11, pp 638–672

    Google Scholar 

  • GrĂĽnthal E (1933): Ăśber das spezifisch Menschliche im Hypothalamusbau. J Psychol Neurol 45: 237–253

    Google Scholar 

  • Hartwig HG, Wahren W (1982): Anatomy of the hypothalamus. In: Stereotaxy of the Human Brain, Schaltenbrand G, Walker AE, eds. Stuttgart, New York: Thieme, pp 87–106

    Google Scholar 

  • Hassler R (1959): Anatomy of the thalamus. In: Introduction to Stereotaxis with an Atlas of the Human Brain, Schaltenbrand G, Bailey P, eds. Stuttgart: Thieme, Vol 1, pp 230–290

    Google Scholar 

  • Hayakawa T, Zyo K (1989): Retrograde double-labeling study of the mamillothalamic and the mamillotegmental projections in the rat. J Comp Neurol 284: 1–11

    Google Scholar 

  • Herkenham M (1978): The connections of the nucleus reuniens thalami: Evidence for a direct thalamohippocampal pathway in the rat. J Comp Neurol 177: 589–610

    Google Scholar 

  • Hirano A, Zimmerman HM (1962): Alzheimer’s neurofibrillary changes. A topographic study. Arch Neurol (Chicago) 7: 227–242

    Google Scholar 

  • Hooper MW, Vogel FS (1976): The limbic system in Alzheimer’s disease. Arch Neurol (Chicago) 7: 227–242

    Google Scholar 

  • Hyman BT, Kromer LJ, van Hoesen GW (1988): A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450: 392–397

    Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR (1990): Memory-related neural systems in Alzheimer’s disease: An anatomic study. Neurology 40: 1721–1730

    Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR, Barnes CL (1984): Alzheimer’s disease: Cellspecific pathology isolates the hippocampal formation. Science 225: 1168–1170

    Google Scholar 

  • Hyman BT, van Hoesen GW, Kromer LJ, Damasio AR (1986): Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481

    Google Scholar 

  • Ikeda K, Haga C, Kosaka K (1990): Light and electron microscopic examination of amyloidrich primitive plaques: Comparison with diffuse plaques. J Neurol 237: 88–93

    Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987): The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neurol 264: 356–396

    Google Scholar 

  • Jellinger K (1989): Morphologie der Demenzen. In: Handbuch der Gerontologie, Platt D, ed. Stuttgart, New York: Fischer, Vol 5, pp 3–56

    Google Scholar 

  • Joachim CL, Selkoe DJ (1989): Minireview: Amyloid protein in Alzheimer’s disease. J Gerontol (Biol Sci) 44: 77–82

    Google Scholar 

  • Jones EG (1985): The Thalamus. New York: Plenum

    Google Scholar 

  • Kalus P, Braak H, Braak E, Bohl J (1989): The presubicular region in Alzheimer’s disease: Topography of amyloid deposits and neurofibrillary changes. Brain Res 494: 198–203

    Google Scholar 

  • Kemper TL (1978): Senile dementia: A focal disease in the temporal lobe. In: Senile Dementia: A Biomedical Approach, Nandy E, ed. Amsterdam: Elsevier, pp 105–113

    Google Scholar 

  • Khachaturian ZS (1985): Diagnosis of Alzheimer’s disease. Arch Neurol (Chicago) 42: 1097–1105

    Google Scholar 

  • Lee VMY, Balin BJ, Otvos L Jr, Trojanowski JQ (1991): A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–678

    Google Scholar 

  • LeGros Clark WE (1936): The topography and homologies of the hypothalamic nuclei in man. J Anat 70: 203–214

    Google Scholar 

  • Lorente de NĂł R (1933): Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45: 381–438

    Google Scholar 

  • Malone E (1910): Ăśber die Kerne des menschlichen Diencephalon. Abh K Preuss Akad Wiss, Berlin, Phys Kl, pp 1–31

    Google Scholar 

  • Mann DMA (1985): The neuropathology of Alzheimer’s disease: A review with pathogenetic, aetiological and therapeutic considerations. Mech Ageing Dev 31: 213–255

    Google Scholar 

  • Mann DMA, Esiri MM (1989): The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 89: 169–179

    Google Scholar 

  • Masliah E, Terry RD, Mallory M, Alford M, Hansen LA (1990): Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease. Am J Pathol 137: 1293–1297

    Google Scholar 

  • Mufson EJ, Pandya DN (1984): Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J Comp Neurol 225: 31–43

    Google Scholar 

  • Ogomori K, Kitamoto T, Tateishi J, Sato Y, Suetsugu M, Abe M (1989): β-Protein amyloid is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am J Pathol 134: 243–251

    Google Scholar 

  • Papez JW (1937): A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725–743

    Google Scholar 

  • Perry G, Kawai M, Tabaton M, Onorato M, Mulvihill P, Richey P, Morandi A, Connolly JA, Gambetti P (1991): Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton. J Neurosci 11: 1748–1755

    Google Scholar 

  • Price DL (1986): New perspectives on Alzheimer’s disease. Annu Rev Neurosci 9: 489–512

    Google Scholar 

  • Probst A, Basier V, Bron B, Ulrich J (1983): Neuritic plaques in senile dementia of Alzheimer type: A Golgi analysis in the hippocampal region. Brain Res 268: 249–254

    Google Scholar 

  • Probst A, Brunnschweiler H, Lautenschlager C, Ulrich J (1987): A special type of senile plaque, possibly an initial stage. Acta Neuropathol 74: 133–141

    Google Scholar 

  • Reisberg B, Ferris SH, DeLeon MJ (1985): Senile dementia of the Alzheimer type: Diagnostic and differential diagnostic features with special reference to functional assessment staging (FAST). In: Senile Dementia of the Alzheimer Type, Traber J, Gispen WH, eds. Berlin, Heidelberg: Springer-Verlag, pp 18–37

    Google Scholar 

  • Robertson RT, Kaitz SS (1981): Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195: 501–525

    Google Scholar 

  • Rose M (1928): Gyrus limbicus anterior und Regio retrosplenialis (Cortex holoprotoptychos quinquestratificatus). Vergleichende Architektonik bei Tier und Mensch. J Psychol Neurol 35: 65–173

    Google Scholar 

  • Rose M (1935): Cytoarchitektonik und Myeloarchitektonik der Grosshirnrinde. In: Handbuch der Neurologie, Bumke O, Foerster O, eds. Berlin, Heidelberg: Springer-Verlag, Vol 1, pp 588–778

    Google Scholar 

  • Rosene DL, van Hoesen GW (1987): The hippocampal formation of the primate brain. In: The Cerebral Cortex, Jones EG, Peters A, eds. New York: Plenum, Vol 6, pp 345–456

    Google Scholar 

  • Saper CB (1990): Hypothalamus. In: The Human Nervous System, Paxinos G, ed. San Diego: Academic Press, pp 389–413

    Google Scholar 

  • Saper CB, German DC (1987): Hypothalamic pathology in Alzheimer’s disease. Neurosci Lett 74: 364–370

    Google Scholar 

  • Schwartz SP, Coleman PD (1981): Neurons of origin of the perforant path. Exp Neurol 74: 305–312

    Google Scholar 

  • Seltzer B, Pandya DN (1976): Some cortical projections to the parahippocampal area in the rhesus monkey. Exp Neurol 50: 146–160

    Google Scholar 

  • Shipley MT (1974): Presubiculum afferents to the entorhinal area and the Papez-circuit. Brain Res 67: 162–168

    Google Scholar 

  • Shipley MT, Sorensen KE (1975): On the laminar organization of the anterior thalamus projections to the presubiculum in the guinea pig. Brain Res 86: 473–477

    Google Scholar 

  • Simchowicz T (1911): Histologische Studien ĂĽber die senile Demenz. In: Histologische und histopathologische Arbeiten ĂĽber die Grosshirnrinde mit besonderer BerĂĽcksichtigung der pathologischen Anatomie der Geisteskrankheiten, Nissl F, Alzheimer A, eds. Jena: Fischer, Vol 4, pp 267–444

    Google Scholar 

  • Sørensen KE, Shipley MT (1979): Projections from the subiculum to the deep layers of the ipsilateral presubicular and entorhinal cortices in the guinea pig. J Comp Neurol 188: 313–334

    Google Scholar 

  • Squire LR, Zola-Morgan S (1988): Memory: Brain systems and behavior. Trends Neurosci 11: 170–175

    Google Scholar 

  • Stephan H (1975): Allocortex. In: Handbuch der mikroskopischen Anatomie des Menschen, W Bargmann, ed. Berlin, New York: Springer-Verlag, Vol 4/9, pp 1–998

    Google Scholar 

  • Steward O, Scoville SA (1976): Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169: 347–370

    Google Scholar 

  • Tabaton M, Mandybur TI, Perry G, Onorato M, Autilio-Gambetti L, Gambetti P (1989): The widespread alteration of neurites in Alzheimer’s disease may be unrelated to amyloid deposition. Ann Neurol 26: 771–778

    Google Scholar 

  • Terry RD (1985): Alzheimer’s disease. In: Textbook of Neuropathology, Davis RL, Robertson DM, eds. Baltimore, MD: Williams & Wilkins, pp 824–841

    Google Scholar 

  • Tomlinson BE, Corsellis JAN (1984): Ageing and the dementias. In: Greenfield’s Neuropathology, Adams JH, Corsellis JAN, Duchen LW, eds. London: Arnold, 4th ed, pp 951–1025

    Google Scholar 

  • van Groen T, van Haren F, Witter MP, Groenewegen HJ (1986): The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat. J Comp Neurol 250: 485–497

    Google Scholar 

  • van Groen T, Wyss JM (1990a): The connections of presubiculum and parasubiculum in the rat. Brain Res 518: 227–243

    Google Scholar 

  • van Groen T, Wyss JM (1990b): Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300: 593–606

    Google Scholar 

  • Van Hoesen GW (1982): The primate parahippocampal gyrus: New insights regarding its cortical connections. Trends Neurosci 5: 345–350

    Google Scholar 

  • Van Hoesen GW, Hyman BT (1990): Hippocampal formation: Anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83: 445–457

    Google Scholar 

  • Van Hoesen GW, Hyman BT, Damasio AR (1991): Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1–8

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1–24

    Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1972): Cortical afferents to entorhinal cortex of rhesus monkey. Science 175: 1471–1473

    Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982a): The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). I. Cytoarchitectonic organization. J Comp Neurol 207: 114–134

    Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982b): The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207: 135–156

    Google Scholar 

  • Vogt BA (1976): Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. J Comp Neurol 169: 63–98

    Google Scholar 

  • Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 4, pp 89–149

    Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987): Cingulate cortex of the rhesus monkey. I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262: 256–270

    Google Scholar 

  • Vogt BA, Rosene DL, Pandya DN (1979): Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204: 205–207

    Google Scholar 

  • von BraunmĂĽhl A (1957): Alterserkrankungen des Zentralnervensystems. Senile Involution. Senile Demenz. Alzheimersche Krankheit. In: Handbuch der speziellen pathologischen Anatomie und Histologie, Lubarsch O, Henke F, Rössle R, eds. Berlin: Springer-Verlag, Vol 13/1A, pp 337–539

    Google Scholar 

  • von Economo C (1926): Ăśber den Zusammenhang der Gebilde des Retrosplenium. Z Zellforsch Mikrosk Anat 3: 449–460

    Google Scholar 

  • von Economo C, Koskinas GN (1925): Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Wien, Berlin: Springer-Verlag

    Google Scholar 

  • Wilcock GK, Esiri MM (1982): Plaques, tangles and dementia. A quantitative study. J Neurol Sci 56: 343–356

    Google Scholar 

  • Witter MP, van Hoesen GW, Amaral DG (1989): Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9: 216–228

    Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Ihara Y (1988a): A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by β protein immunostaining. Acta Neuropathol 76: 541–549

    Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Harigaya Y (1988b): Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol 77: 113–119

    Google Scholar 

  • Yamaguchi H, Nakazato Y, Hirai S, Shoji M, Harigaya Y (1989): Electron micrograph of diffuse plaques. Initial stage of senile plaque formation in the Alzheimer brain. Am J Pathol 135: 593–597

    Google Scholar 

  • Yamaguchi H, Nakazato Y, Shoji M, Ihara Y, Hirai S (1990): Ultrastructure of neuropil threads in the Alzheimer brain: Their dendritic origin and accumulation in the senile plaques. Acta Neuropathol 80: 368–374

    Google Scholar 

  • Zilles K (1990): Cortex. In: The Human Nervous System, Paxinos G, ed. San Diego: Academic Press, pp 757–802

    Google Scholar 

  • Zilles K, Armstrong E, Schlaug G, Schleicher A (1986): Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253: 514–524

    Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989): Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9: 4355–4370

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braak, H., Braak, E. (1993). Alzheimer Neuropathology and Limbic Circuits. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_22

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics