Skip to main content

Remarks on Equations Related to Fermat’s Last Theorem

  • Chapter
Number Theory Related to Fermat’s Last Theorem

Part of the book series: Progress in Mathematics ((PM,volume 26))

  • 854 Accesses

Abstract

For odd k, define θ(k) as the least value of s such that

has a non-trivial Solution over the integers. Fermat’s Last Theorem impl ies that θ(k) > 3 for odd k > 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.C. Ankeny, E. Artin, and S. Chowla. “The Class-Number of Real Quadratic Number Fields,” Ann. of Math. 56 (1952), 479–493.

    Article  Google Scholar 

  2. This has the (implicit) conjecture that for prime p ≡ 1(4), where Bn is the n-th Bernoulli number. This is of interest, if true, since we would have that the middle “B” in the Kummer sequence of B’s is not divisible by p. Confirmed by S. Wagstaff for p 125000, in Math, of Computation 33, (1979).

    Google Scholar 

  3. B.J. Birch and H.P.F. Swinnerton-Dyer. “Notes on Elliptic Curves, II,” J. Reine Angew. Math. 218 (1965), 79–103.

    Google Scholar 

  4. A. Bremner. “A Geometric Approach to Equal Sums of Fifth Powers,” J. Number Theory 13 (1981), 337–354.

    Article  Google Scholar 

  5. S. Chowla. “Contributions to the Analytic Theory of Numbers,” J. Ind. Math. Soo. 25 (1934), 121–126.

    Google Scholar 

  6. S. Chowla. “0n the k-Analogue of a Result in the Theory of the Riemann Zeta-Function,” Math. Zeitsch. 38 (1934), 483–487. Here i is proved that r2 3(n), the_number of representations of n as a sum of three squares is ß(/n log log n) for by means of Square free values proved by Littlewood under the assumption of the “extended” Riemann hypothesis.

    Google Scholar 

  7. S. Chowla and M. Cowles. “The Diophantine Equation 27y2 + 4x3 = M, J. Reine Angew. Math. 291 (1977), 220.

    Google Scholar 

  8. S. Chowla and M. Cowles. “On the Coefficients in the Expansion x (l-xn)2(l-x11n)2 = I? c xn,” J. Reine Angew. Math. 292 (1977), 115–116.

    Google Scholar 

  9. S. Chowla and G. Shimura. “On the Representation of Zero as a Linear Combination of k-th Powers,” Norske Vid. Selsk. Forh. 36 (1963), 169–176.

    Google Scholar 

  10. L.E. Dickson. “History of the Theory of Numbers,” Vol. 2, Diophantine Analysis, Carnegie Institution of Washington (1920). Reprint Chelsea.

    Google Scholar 

  11. P. Erdös. “On the Representation of a Number as a sum of k k-th Powers,” J. Lond. Math. Soo. 9 (1934), 132–136.

    Google Scholar 

  12. E. Landau. Vorlesungen über Zahlentheorie (III), S. Hirzel, Leipzig (1927).

    Google Scholar 

  13. K. Mahler. “On Hypothesis K of Hardy and Littlewood,” J. Lond. Math. Soo. 9 (1934), 136–141.

    Google Scholar 

  14. A. Moessner. “Curious Identit ies,” Scripta Math. 6 (1939), 180.

    Google Scholar 

  15. S. Sastry. “On Sums of Powers,” J. Lond. Math. Soc. 9 (1934), 242–246.

    Article  Google Scholar 

  16. E.S. Selmer. “The Diphantine Equation ax + by J + cz J = 0,” Acta Math. 85 (1951), 203–362.

    Article  Google Scholar 

  17. N.M. Stephens. “The Diophantine Equation x-5 + y = Dz and the Conjectures of Birch-Swinnerton-Dyer,” J. Reine Angew. Math. 231 (1968), 121–162.

    Google Scholar 

  18. A. Tietäväinen. “On a Problem of Chowla and Shimura,” J. Number Theory 3 (1971), 247–252.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chowla, S., Cowles, M. (1982). Remarks on Equations Related to Fermat’s Last Theorem. In: Koblitz, N. (eds) Number Theory Related to Fermat’s Last Theorem. Progress in Mathematics, vol 26. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6699-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6699-5_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3104-8

  • Online ISBN: 978-1-4899-6699-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics