The Optimal Cardiovascular Regulation of the Arterial Blood Pressure

  • Koichi Ono
  • Takashi Uozumi
  • Chiyoshi Yoshimoto
  • Thomas Kenner


The arterial pressure in animals is maintained within narrow limit over a wide range of body conditions inspite of many factors and functions involved. The baroreceptor reflexes qualify as the regulatory mechanism. The baroreceptor reflex composes a feedback control system which has the arterial pressure for its output. The system is concidered to operate around a particular set point of arterial pressure, above or below which changes in autonomic activities are evoked. However, under what principle, the regulation of arterial pressure is determined remains unsolved. Among many possibilities we have chosen the optimal criteria to be elucidated. The first indication of optimal relations in the cardiovascular function is found in Broemser’s paper (1935). Recently a few papers in this field have been proposed (Takaya,1972; Ono, et al, 1976; 1977; 1979; Kenner, 1974; Yamashiro, et al, 1978; Doubek, 1978; Suga, 1979).


Arterial Pressure Weighting Factor Optimal Contraction Contractile Component Series Elastic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Broemser, Ph., 1935, Ueber die optimale Beziehung zwischen Haerztaetigkeit und physikalischen Konstanten des Gefaess-system, Zeitschr.f. Biolog. 96:1.Google Scholar
  2. (2).
    Coleman, H.N., Sonnenblick, E.H., Brauwald, E., 1969, Myocardial oxygen consumption associated with external work: The Fenn Effect, Am.J.Physiol., 217:291.PubMedGoogle Scholar
  3. (3).
    Doubek Jr, E., 1978, Least energy regulation of the arterial system, Bull.Math.Biolog., 40: 79.CrossRefGoogle Scholar
  4. (4).
    Kenner, Th., 1974, Beziehung zwischen Dynamik und Regulation des Arterien Systems, Verh.Dtsch.Ges.Kreislauffrschg.40:41.CrossRefGoogle Scholar
  5. (5).
    Kenner, Th. and Ono, K., 1972, Interaction between circulatory control and drug induced reactions, Pflueg.Arch., 331:335.CrossRefGoogle Scholar
  6. (6).
    Ono, K., Uozumi, T., Yoshimoto, C., 1976, Optimization processes of control hierarchies in the circulation, Proc.Intnat.Cong. Angiol., 19:46.Google Scholar
  7. (7).
    Ono, K., Uozumi, T., Yoshimoto, C., Kenner, Th., 1977, Hierarchical analysis of the cardiovascular control, Proc.Intnat.Physiol. 13: 569.Google Scholar
  8. (8).
    Ono, K., Uozumi, T., Yoshimoto, C., 1979 A role of carotid barostatic reflex in the hierarchical level, Pflueg.Arch., 379:28.Google Scholar
  9. (9).
    Suga, H., 1979, Minimal oxygen consumption and optimal contractility of the heart, Bull.Math.Biolog., 41:139.Google Scholar
  10. (10).
    Takaya, K., 1972, Studies on an optimum contractile process of the left ventricular system, Dissertation of Hokkaido Univ., Japan.Google Scholar
  11. (11).
    Yamashiro, S.M., Daubenspeck, J.A., Bennet, F.M., Edelmann, VS.K., Grodins, F.S., 1978, Optimal control analysis of the left ventricular ejection, In: Cardiovasc.Systm.Dynamics, Baan, J., Noordergraaf, A., Rains, J., (eds), MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Koichi Ono
    • 1
  • Takashi Uozumi
    • 1
  • Chiyoshi Yoshimoto
    • 1
  • Thomas Kenner
    • 2
  1. 1.Institute of Applied ElectricityHokkaido UniversitySapporoJapan
  2. 2.Institute of PhysiologyUniversity of GrazGrazAustria

Personalised recommendations