Advertisement

Perturbative Quantum Chromodynamics

  • Stanley J. Brodsky
  • G. Peter Lepage
Part of the Progress in Physics book series (PMP, volume 4)

Abstract

From the perspective of the hadronic physics of a decade ago it seems incredible that there now exists a viable, fundamental theory of the strong interactions. In fact, quantum chromodynamics is radically different from the picture of hadronic phenomena which was envisioned in the 1960’s. In contrast to the hadronic bootstrap, the quark and gluon quanta of QCD represent fundamental hadronic constituents, the elementary carriers of the electromagnetic and weak currents. In contrast to a strong-coupling model, the quark and gluon interactions of QCD approach scale-invariance at short distances and can be computed as a perturbative expansion in an asymptotically small coupling constant.1,2 As a consequence, the large momentum-transfer strong, electromagnetic, and weak interactions of hadrons are patterned after elementary short-distance gluon and quark subprocesses.

Keywords

Transverse Momentum Structure Function Operator Product Expansion Deep Inelastic Scattering Inclusive Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References — Chapters 1–6

  1. 1.
    H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973);Google Scholar
  2. D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 123 (1973).Google Scholar
  3. 2.
    Reviews of QCD are given in A. J. Buras, FNAL-PUB 79/17-THY (1979);Google Scholar
  4. H. D. Politzer, Phys. Rep. 14C, 129 (1974);Google Scholar
  5. W. Marciano and H. Pagels, Phys. Rep. 36C, 137 (1978);Google Scholar
  6. Yu. L. Dokshitser, D. I. D’yakanov and S. I. Troyan, Phys. Rep. C (in press, 1979);Google Scholar
  7. A. Peterman, CERN-TH-2581, to appear in Phys. Rep.Google Scholar
  8. 3.
    S. J. Brodsky, T. DeGrand, J. F. Gunion and J. H. Weis, Phys. Rev. Lett. 41, 672 (1978)Google Scholar
  9. S. J. Brodsky, T. DeGrand, J. F. Gunion and J. H. Weis, Phys. Rev. D19, 1418 (1979);Google Scholar
  10. C. H. Llewellyn Smith, Phys. Lett. 79B, 83 (1978);Google Scholar
  11. K. Kajantie, Phys. Scripta 29, 230 (1970). A detailed discussion is given in Chapter 10.Google Scholar
  12. 4.
    H. Fritzsch and M. Gell-Mann, 16th International Conference on High Energy Physics (Batavia), 1972;Google Scholar
  13. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47, 365 (1973).Google Scholar
  14. 5.
    For a recent review see T. Kinoshita, Cornell preprint CLNS-79/437 (1977).Google Scholar
  15. 6.
    For recent review of the current status of QCD see the rapporteur talks of J. Ellis, CERN TH-2794, 9th International Symposium on Lepton and Photon Interactions, FNAL (1979) and J. Bjorken, A. DeRujula and M. K. Gaillard at the EPS International Conference on High Energy, Geneva (1979); see also the lectures on deep inelastic scattering (W. Atwood and M. Barnett), lepton-pair production and large pT processes (R. Stroynowski), and jet production (G. Schierholz and R. Schwitters) in this volume.Google Scholar
  16. 7.
    Comprehensive introductions to perturbative QCD are given by: Yu. L. Dokshitser, I. D’yakanov and S. I. Troyan, SLAC-TRANS-183, translations for Proceedings of the 13th Leningrad Winter School on Elementary Particle Physics (1978);Google Scholar
  17. C. H. Llewellyn Smith, Oxford preprint 47/48, Lectures presented at the XVII Internationale Universitatswochen fur Kernphysik, Schmalding, Austria (1978), published in Acta Physics Austriaca, Suppl. XIX, 331–397 (1978);Google Scholar
  18. J. Ellis, SLAC-PUB-2121 (1978), and Proceedings of the SLAC Summer Institute on Particle Physics (1978);Google Scholar
  19. C. T. Sachrajda, CERN-TH-2492 (1978), presented at the XIII Rencontre de Moriond;Google Scholar
  20. R. Field, Proceedings of the 1978 La Jolla Institute Summer Workshop, La Jolla, CA, in “Quantum Chromodynamics”;Google Scholar
  21. Wm. Frazer and F. Henyey (eds.) (AIP, 1979 );Google Scholar
  22. C. H. Llewellyn Smith, Oxford preprint 54/79, 1979 Boulder Lectures;Google Scholar
  23. E. deRafael, Marseille preprint (1979).Google Scholar
  24. 8.
    S. J. Brodsky and G. P. Lepage, SLAC-PUB-2294, published in “Quantum Chromodynamics”; Wm. Frazer and F. Henyey (eds.) (AIP, 1979), SLAC-PUB-2348, Phys. Rev. Lett. 43, 545 (1979)Google Scholar
  25. S. J. Brodsky and G. P. Lepage, Erratum, ibid. 43, 1625 (1979)Google Scholar
  26. S. J. Brodsky and G. P. Lepage, Phys. Lett. 87B, 359 (1979), and to be published.Google Scholar
  27. 9.
    S. J. Brodsky, Y. Frishman, G. P. Lepage and C. Sachrajda, CERNTH-2371 (1979), to be published in Phys. Lett.Google Scholar
  28. 10.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974);Google Scholar
  29. H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).Google Scholar
  30. 11.
    For reviews of Yang-Mills theories, see Ref. 2 and I. C. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973).Google Scholar
  31. 12.
    P. Cvitanovic, Phys. Rev. D14, 1536 (1976), and references therein.Google Scholar
  32. 13.
    L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 29 (1967);Google Scholar
  33. B. Lautrup, Niels Bohr Institute preprint NBI-HE-76–14 (1976).Google Scholar
  34. 14.
    For a detailed review of non-perturbative effects see J. D. Bjorken, this volume, and SLAC-PUB-2366 (1979), Proceedings of the EPS on High Energy Physics Conference, Geneva (1979);Google Scholar
  35. N. Andrei and D. J. Gross, Phys. Rev. D18, 468 (1978);Google Scholar
  36. R. D. Carlitz and C. Lee, Phys. Rev. D17, 3238 (1978);Google Scholar
  37. L. Baulieu, J. Ellis, M. K. Gaillard and W. J. Zakrewski, Phys. Lett. 81B, 41 (1979)Google Scholar
  38. L. Baulieu, J. Ellis, M. K. Gaillard and W. J. Zakrewski, Phys. Lett. 77B, 290 (1978);Google Scholar
  39. T. Appelquist and R. Shankar, Phys. Rev. D18, 2952 (1978).Google Scholar
  40. 15.
    V. Novikov, M. Shifman, A. Vainstein and V. Zahkarov, ITEP preprint (1979);Google Scholar
  41. M. Shifman, A. Vainstein and V. Zahkarov, Nucl. Phys. B147, 385, 488 (1978).Google Scholar
  42. 16.
    J. Ellis, M. K. Gaillard and W. J. Zakrewski, Phys. Lett. 81B, 224 (1979)Google Scholar
  43. J. Ellis, M. K. Gaillard and W. J. Zakrewski, Phys. Lett. 81B, 41 (1979)Google Scholar
  44. J. Ellis, M. K. Gaillard and W. J. Zakrewski, Phys. Lett. 77B, 290 (1978).Google Scholar
  45. 17.
    In the Coulomb or radiation gauge (), the coupling constant renormalization can be computed from the self-energy corrections to transversely polarized gluon exchange. For a review of the physics of asymptotic freedom, see S. D. Drell (to be published);Google Scholar
  46. V. F. Weiskopf, Proceedings of the Erice Summer School (1974);Google Scholar
  47. R. Field, Ref. 7; An early calculation was given by F. B. Khriplovich, Yad. Fiz. 10, 409 (1969).Google Scholar
  48. 18.
    Note that at large k2, after ultraviolet renormalization, the self-energy and vertex insertions give the factor Google Scholar
  49. 19.
    M. Creutz, BNL preprint 79–0919 (1979) and references therein.Google Scholar
  50. 20.
    M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668 (1979).Google Scholar
  51. 21.
    K. Chertyrkin, A. Kataev and F. Tkachov, Moscow INR preprint P-0126;Google Scholar
  52. Wm. Celmaster and R. J. Gonzalves, UCSD-10P10–206 (1979)Google Scholar
  53. 22.
    By relating integrals of R(s) to π(q2) one can extend the predictions of QCD into the resonance region;Google Scholar
  54. E. C. Poggio, H. R. Quinn and S. Weinberg, Phys. Rev. D13, 1958 (1976);Google Scholar
  55. A. Sands, Rockefeller preprint C00–2232B-178, Phys. Rev. Lett. 42, 1658 (1979);Google Scholar
  56. G. Moorhouse, R. Pennington and G. Ross, Nucl. Phys. B124, 285 (1977). See also Ref. 15.Google Scholar
  57. 23.
    T. Kinoshita, J. Math. Phys. 3, 650 (1982);Google Scholar
  58. T. D. Lee and M. Nauenberg, Phys. Rev. 133B, 1549 (1964);Google Scholar
  59. T. Kinoshita and A. Ukawa, Phys. Rev. D15, 1596 (1977)Google Scholar
  60. T. Kinoshita and A. Ukawa, Phys. Rev. D16, 332 (1977).Google Scholar
  61. D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140, 54 (1978).Google Scholar
  62. 24.
    J. Bjorken, this volume.Google Scholar
  63. 25.
    J. Kogut and L. Susskind, Phys. Rev. D10, 732 (1974);Google Scholar
  64. J. Bjorken in Lecture Notes in Physics, “Current-Induced Reactions,” ed. by J. Korner et al., Springer-Verlag (N.Y.) 1975;Google Scholar
  65. D. Amati and G. Veneziano, Phys. Lett. 83B, 87 (1979);Google Scholar
  66. F. Low, S. Brodsky and G. Veneziano in. Veneziano in “Color Symmetry and Quark Confinement,” Proceedings of 12th Rencontre de Moriond, ed. by J. Tran Thanh Van (Editions Frontiers-France, 1977 ).Google Scholar
  67. 26.
    G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977);Google Scholar
  68. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977);Google Scholar
  69. H. Georgi and M. Mahachek, Phys. Rev. Lett. 39, 1237 (1977);Google Scholar
  70. G. Schierholz, this volume; M. K. Gaillard, LAPP-TH-011 (1979);Google Scholar
  71. P. Söding, at the EPS International Conference on High Energy Physics, Geneva (1970).Google Scholar
  72. 27.
    S. J. Brodsky and J. F. Gunion, Phys. Rev. Lett. 37, 402 (1976);Google Scholar
  73. K. Konishi, A. Ukawa and G. Veneziano, Phys. Lett. 78B, 243 (1978);Google Scholar
  74. G. Veneziano, XIX International Conference on High Energy Physics, Tokyo (1978).Google Scholar
  75. 28.
    C. Louis Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Rev. Lett. 41, 1585 (1970).Google Scholar
  76. 29.
    See, e.g., W. Furmanski, R. Petronzio and S. Pokorski, Nucl. Phys. B155, 253 (1979).Google Scholar
  77. 30.
    For reviews and references, see J. Ellis, Refs. 6 and 7; B. L. Ioffe, ITEP-90 (1978).Google Scholar
  78. 31.
    J. Ellis, M. K. Gaillard and G. C. Ross, Nucl. Phys. B111, 253 (1976);Google Scholar
  79. T. DeGrand, Y. J. Ng and S.-H. H. Tye, Phys. Rev. D16, 3251 (1977). For recent references, see J. Ellis, Ref. 6.Google Scholar
  80. 32.
    See also the model of A. Casher, H. Neuberger and S. Nussinov, Tel-Aviv preprint (1979).Google Scholar
  81. 33.
    K. Shizuya and S.-H. H. Tye, Phys. Rev. Lett. 41, 787 (1978);Google Scholar
  82. M. B. Einhorn and G. G. Weeks, Nucl. Phys. B146, 445 (1978);Google Scholar
  83. A. V. Smilga and M. I. Vysotsky, ITEP-97 (1978);Google Scholar
  84. B. L. Ioffe, Nucl. Phys. B150, 173 (1978), ITEP-90 (1978);Google Scholar
  85. L. Clavelli and H. P. Nilles, BONN-HE-79–14 (1979).Google Scholar
  86. 34.
    S. J. Brodsky, T. A. DeGrand and R. F. Schwitters, Phys. Lett. 79B, 255 (1979);Google Scholar
  87. A. V. Smilga and M. I. Vysotsky, ITEP-12 (1978);Google Scholar
  88. L. Clavelli, Bonn preprints HE-79–4 and 19 (1979).Google Scholar
  89. See, e.g., Yu. Dokshitser et al., Ref. 7; W. Frazer and J. Gunion, Phys. Rev. D19, 2447 (1979);Google Scholar
  90. T. DeGrand, Nucl. Phys. B151, 485 (1979).Google Scholar
  91. 36.
    R. P. Feynman, “Photon-Hadron Interactions” (Benjamin, Reading, MA, 1972 );Google Scholar
  92. R. P. Feynman, R. D. Field and G. C. Fox, Nucl. Phys. B128, 1 (1977)Google Scholar
  93. R. P. Feynman, R. D. Field and G. C. Fox, Phys. Rev. D18, 3320 (1978)Google Scholar
  94. R. P. Feynman, R. D. Field and G. C. Fox, Nucl. Phys. B136, 1 (1978).Google Scholar
  95. 37.
    R. Cahn and W. Colglazier, Phys. Rev. D9, 2658 (1974);Google Scholar
  96. S. J. Brodsky and N. Weiss, Phys. Rev. D16, 2325 (1977).Google Scholar
  97. 38.
    See, e.g., C. H. Llewellyn Smith, Ref. 3;Google Scholar
  98. R. Rückl, S. J. Brodsky and J. F. Gunion, Phys. Rev. D18, 2469 (1978).Google Scholar
  99. 39.
    J. Bjorken and E. Paschos, Phys. Rev. D1, 3151 (1970).Google Scholar
  100. 40.
    K. Wilson, Phys. Rev. 179, 1499 (1969);Google Scholar
  101. N. Christ, B. Hasslacher and A. Mueller, Phys. Rev. D6, 3543 (1972).Google Scholar
  102. 41.
    L. N. Lipatov, Yad. Fiz. 20, 181 (1974)Google Scholar
  103. L. N. Lipatov, Soy. J. Nucl. Phys. 20, 94 (1974)3.Google Scholar
  104. 42.
    Wm. Frazer and J. Gunion, Ref. 35.Google Scholar
  105. 43.
    V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 and 1218 (1972) [Solt. J. Nucl. Phys. 15, 438 and 675 (1972)3.Google Scholar
  106. 44.
    G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1971);Google Scholar
  107. Yu. L. Dokshitser, ZhETF 71, 1216 (1977)Google Scholar
  108. Yu. L. Dokshitser, Sov. Phys. JETP 46, 641 (1977);Google Scholar
  109. Yu. L. Dohshitser, D. I. Dyakanov and S. I. Troyan, Ref. 7.Google Scholar
  110. 45.
    J. Abad and B. Humbert, Phys. Lett. 77B, 105 (1978)Google Scholar
  111. J. Abad and B. Humbert, Phys. Lett. 80B, 286 (1979);Google Scholar
  112. G. Altarelli, R. J. Ellis and G. Martinelli, Nucl. Phys. B143, 521Google Scholar
  113. G. Altarelli, R. J. Ellis and G. Martinelli, Nucl. Phys. B146, 544 (1978);Google Scholar
  114. A. P. Contogouris and J. Kripfganz, Phys. Rev. D19, 2207 (1979);Google Scholar
  115. K. Harada, T. Kaneko and N. Sakai, Nucl. Phys. B155, 169 (1979);Google Scholar
  116. B. Humbert and W. L. van Neervan, Phys. Lett. 84B, 327 (1979)Google Scholar
  117. B. Humbert and W. L. van Neervan, Phys. Lett. 85B, 293 (1979);Google Scholar
  118. J. Kubar-André and F. E. Paige, Phys. Rev. D9, 221 (1978);Google Scholar
  119. R. Field, Ref. 7.Google Scholar
  120. 46.
    R. Barbieri, E. d’Emilio, G. Curci and E. Remiddi, Nucl. Phys. B154, 535 (1979).Google Scholar
  121. 47.
    S. D. Drell, B. Levy and T. M. Yan, Phys. Rev. D1, 1035 (1970)Google Scholar
  122. S. D. Drell, B. Levy and T. M. Yan, Phys. Rev. D1, 1617 (1970)Google Scholar
  123. S. D. Drell, B. Levy and T. M. Yan, Phys. Rev. 187, 2159 (1969).Google Scholar
  124. 48.
    S. Weinberg, Phys. Rev. 150, 1313 (1966);Google Scholar
  125. L. Susskind and G. Frye, Phys. Rev. 165, 1535 (1968);Google Scholar
  126. J. B. Kogut and D. E. Soper, Phys. Rev. D1, 2901 (1970);Google Scholar
  127. J. D. Bjorken, J. B. Kogut and D. E. Soper, Phys. Rev. D3, 1382 (1971);Google Scholar
  128. M. Schmidt, Phys. Rev. D9, 408 (1974);Google Scholar
  129. S. J. Brodsky, F. E. Close and J. Gunion, Phys. Rev. D5, 1384 (1972).Google Scholar
  130. 49.
    S. J. Brodsky, R. Roskies and R. Suaya, Phys. Rev. D8, 4574 (1973).Google Scholar
  131. 50.
    S. J. Brodsky and G. P. Lepage, to be published.Google Scholar
  132. 51.
    This is the light-cone parameter analog of the Drell-Yan-Levy frame introduced in Ref. 47.Google Scholar
  133. 52.
    See J. Kogut and L. Susskind, Ref. 25.Google Scholar
  134. 53.
    See also Yu. L. Dokshitser et al., Ref. 7.Google Scholar
  135. 54.
    A. J. Buras, E. G. Floratos, D. A. Ross and C. T. Sachrajda, Nucl. Phys. B129, 66 (1977);Google Scholar
  136. W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D18, 3998 (1978). For reviews, see Refs. 2, 6, 7 and D. Ross, CALT-68–699 (1979).Google Scholar
  137. 55.
    D. R. Yennie, S. C. Frautschi and H. Suura, Ann. of Phys. 13, 379 (1961);Google Scholar
  138. D. R. Yennie in “Lectures on Strong and Electromagnetic Interactions,” Brandeis Summer Institute, Vol. I (1963).Google Scholar
  139. W. G. Scott et al., CERN/EP 79–91 (1979).Google Scholar
  140. G. Altarelli, R. K. Ellis, G. Martinelli and S.-Y. Pi, Nucl. Phys. B160, 301 (1979).Google Scholar
  141. 57.
    See, e.g., D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140, 54 (1978)Google Scholar
  142. See, e.g., D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B146, 29 (1978);Google Scholar
  143. R. K. Ellis, H. Georgi, M. Mahachek, H. D. Politzer and G. G. Ross, Phys. Lett. 78B, 281 (1978)Google Scholar
  144. R. K. Ellis, H. Georgi, M. Mahachek, H. D. Politzer and G. G. Ross, Nucl. Phys. B152, 285 (1979);Google Scholar
  145. S. Libby and G. Sterman, Phys. Lett. 78B, 618 (1978)Google Scholar
  146. S. Libby and G. Sterman, Phys. Rev. D18, 3252, 4737 (1978);Google Scholar
  147. W. B. Frazer and J. F. Gunion, Phys. Rev. D19, 2447 (1979);Google Scholar
  148. Y. Kamaza and Y.-P. Yao, Phys. Rev. Lett. 41, 611 (1978)Google Scholar
  149. Y. Kamaza and Y.-P. Yao, Phys. Rev. D19, 3111, 3121 (1979);Google Scholar
  150. C. H. Llewellyn Smith, Acta. Phys. Austriaca, Suppl. XIX, 331 (1978);Google Scholar
  151. A. B. Carter and C. H. Llewellyn Smith, Oxford preprint 34179;Google Scholar
  152. A. V. Radyushkin, Serpurkhov preprint E2–11535 (1978);Google Scholar
  153. R. Field, Ref. 7; Yu. L. Dokshitser et al., Refs. 7 and 2.Google Scholar
  154. 58.
    The π2 factor is associated with corrections to annihilation subprocesses. For quarkonium decays, see R. Barbieri et al., Ref. 46.Google Scholar
  155. References — Chapters 7–9Google Scholar
  156. 1.
    G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 87B, 359 (1978).Google Scholar
  157. D. Sivers, R. Blankenbecler and S. J. Brodsky, Phys. Rep. 23C, 1 (1976).Google Scholar
  158. 2.
    S. J. Brodsky and G. P. Lepage, SLAC-PUB-2294, presented at the Workshop on Current Topics in High Energy Physics, Cal Tech (1979), published in “Quantum Chromodynamics’; W. Frazer and F. Henyey, eds. ( AIP, 1979 ).Google Scholar
  159. 3.
    G. P. Lepage and S. J. Brodsky, Phys. Lett. 87B, 257 (1979).Google Scholar
  160. S. J. Brodsky, G. P. Lepage, Y. Frishman and C. Sachrajda, CERN-TH-2731 (1979).Google Scholar
  161. 4.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)Google Scholar
  162. S. J. Brodsky and G. R. Farrar, Phys. Rev. D11, 1309 (1975).Google Scholar
  163. 5.
    V. A. Matveev, R. M. Muradyan and A. V. Tavkheldize, Lett. Nuovo Cimento 7, 719 (1973).Google Scholar
  164. 6.
    The spectator rule holds for general structure functions Ga/A(x) including the case where a is composite. See S. J. Brodsky and R. Blankenbecler, Phys. Rev. D10, 2973 (1974). As we shall see, spin corrections can modify this rule in the fixed x, Q2 → ∞ limit, with 1-x small.Google Scholar
  165. 7.
    Strictly speaking, there is no P → ∞ limit for Fock states of charged systems. We wish to thank R. P. Feynman for an illuminating discussion on this point.Google Scholar
  166. 8.
    An analogous method is used by W. Caswell and G. P. Lepage, Phys. Rev. A18, 810 (1978) to systematically treat higher order radiative corrections to the positronium spectrum.Google Scholar
  167. 9.
    The analysis described here has also been performed in general covariant gauges. The final results are demonstrably gauge invariant even though the covariant analysis involves Fock states in ψλ containing any number of longitudinally polarized gluons.Google Scholar
  168. 10.
    S. J. Brodsky, R. Roskies and R. Suaya, Phys. Rev. D8, 4575 (1978).Google Scholar
  169. 11.
    This result follows by integrating Eq. (7.7) over k2 = Q2, where K is approximated by single gluon exchange and the transverse momentum integrals are strongly ordered; i.e., Differentiating with respect to ξ leads immediately to Eq. (7.16).Google Scholar
  170. 12.
    Equation (7.24) was also obtained independently by A. V. Efremov and A. V. Radyushkin, Dubna preprint JINR-E2–11983 assuming the validity of the operator product expansion.Google Scholar
  171. 13.
    G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43, 246 (1979);Google Scholar
  172. D. R. Jackson, Ph:D. Thesis, Cal Tech (1977).Google Scholar
  173. G. Parisi, Phys. Lett. 84B, 225 (1979).Google Scholar
  174. 14.
    This is a consequence of the vector nature of the gluon. The helicity of massless fermions is conserved by vector couplings and thus any helicity-flip amplitude TB vanishes as the quark masses become negligible. Furthermore, in the Breit frame (), the change in longitudinal angular momentum for a helicityconserving amplitude is where h is the helicity of the initial and final hadrons. Since a photon induces the transition, angular momentum conservation requires |2h| ≤ 1. Consequently form factors for |h| ≥ 1 hadrons, as do those for transitions with ∆h ≠ 0, are suppressed by factors of m/Q relative to the leading form factors.Google Scholar
  175. 15.
    A. I. Vainshtain and V. I. Zakharov, Phys. Lett. 72B, 368 (1978);Google Scholar
  176. G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1416 (1975).Google Scholar
  177. 16.
    We wish to thank G. R. Farrar for conversations on this point.Google Scholar
  178. 17.
    Since V is symmetric under the interchange x ↔ y, the eigenvalues γn are real and the eigenfunctions are orthogonal with respect to weight xlx2x3. Convergence of the expansion (7.32) is assured by the boundary conditions satisfied by bound state wave functions with finite kinetic energy.Google Scholar
  179. 18.
    The anamolous dimensions γn for the baryon wave function have been verified by M. Peskin, Harvard preprint HUTP-79/A055 (1979).Google Scholar
  180. 19.
    Note that we are not assuming SU(6) symmetry. The fact that the coordinate space wave functions becomes symmetric at short distances is a dynamical consequence of the theory.Google Scholar
  181. 20.
    TB is Lorentz- and gauge-invariant. It is most easily computed in the Breit frame (p′ = −p) where only three independent amplitudes need be computed (Fig. 1a). This method is used by E. M. Levin, Yu. M. Shabelsky, V. M. Shekhter and A. N. Solomin, Leningrad preprint 444 (1978). Aside from normalization, the form (7.36) and (7.37) for TH also agrees with the xi ≡ 1/3 result of I. G. Aznauryan et al., Yerevan preprint 342(67)-78 (1979).Google Scholar
  182. 21.
    M. D. Mestayer, SLAC Report No. 214 (1978), and references therein.Google Scholar
  183. 22.
    A. Duncan and A. H. Mueller, Columbia preprints CU-TP-162 and 172 (1979);Google Scholar
  184. S. J. Brodsky and G. P. Lepage, to be published.Google Scholar
  185. 23.
    S. J. Brodsky, Y. Frishman, G. P. Lepage and C. Sachrajda, Ref. 3;Google Scholar
  186. A. V. Efremov and A. V. Radyushkin, Ref. 12.Google Scholar
  187. 24.
    S. J. Brodsky and B. Chertok, Phys. Rev. D14, 3003 (1976)Google Scholar
  188. S. J. Brodsky and B. Chertok, Phys. Rev. Lett. 37, 269 (1976).Google Scholar
  189. 25.
    S. J. Brodsky, in Proceedings of the International Conference on Few Body Problems, Laval University, Quebec (1974), ed. by R. Slobodrian et al.Google Scholar
  190. 26.
    S. J. Brodsky, SLAC-PUB-2395, to be published in the Proceedings of the First Workshop on Ultra-Relativistic Nuclear Collisions, Berkeley (1979).Google Scholar
  191. 27.
    In principle, it should be possible to connect the soft wave function which determines the initial value of the evolution equation to the wave functions determined by bag or other quarkonium models which fit hadron spectroscopy.Google Scholar
  192. 28.
    For an early review, see D. Sivers et al., Ref. 1.Google Scholar
  193. 29.
    R. Blankenbecler, S. J. Brodsky and J. F. Gunion, Phys., Rev. D8, 4117 (1973)Google Scholar
  194. R. Blankenbecler, S. J. Brodsky and J. F. Gunion Phys. Lett. 39B, 649 (1972);Google Scholar
  195. P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. D10, 891 (1974)Google Scholar
  196. M. K. Chase and W. J. Stirling, Nucl. Phys. B133, 157 (1978).Google Scholar
  197. 30.
    P. V. Landshoff, Phys. Rev. D10, 1024 (1974).Google Scholar
  198. P. Cvitanovic, Phys. Rev. D10, 338 (1974);Google Scholar
  199. S. J. Brodsky and G. Farrar, Ref. 4;Google Scholar
  200. A. Donnachie and P. V. Landshoff, preprint M/C 79 /11 (January 1979).Google Scholar
  201. 31.
    A. Donnachie and P. V. Landshoff, preprint M/C 79/11 (January 1979); S. J. Brodsky, Y. Frishman, G. P. Lepage and C. Sachrajda, to be published.Google Scholar
  202. 32.
    J. L. Stone et al., Phys. Rev. Lett. 38, 1315 (1978)Google Scholar
  203. J. L. Stone et al., Nucl. Phys. B143, 1 (1978).Google Scholar
  204. D. G. Crabb et al., Phys. Rev. Lett. 41, 1257 (1978).Google Scholar
  205. 34.
    G. R. Farrar, S. Gottlieb, D. Sivers and G. H. Thomas, Phys. Rev. D20, 202 (1979).Google Scholar
  206. 35.
    S. J. Brodsky, C. Carlson and H. Lipkin, Phys. Rev. D20, 2278 (1979).Google Scholar
  207. R. Anderson et al., Phys. Rev. Lett. 30, 627 (1973).Google Scholar
  208. 37.
    M. A. Shupe et al., Tufts, Harvard, Cornell collaboration (to be published).Google Scholar
  209. K. A. Jenkins et al., Phys. Rev. Lett. 40, 425 (1978).Google Scholar
  210. 39.
    V. Novikov et al., Ref. 15, Chapter 1.Google Scholar
  211. 40.
    S. J. Brodsky and G. P. Lepage (to be published).Google Scholar
  212. 41.
    See the contributions of W. Atwood and M. Barnett to this volume.Google Scholar
  213. 42.
    G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1416 (1975).Google Scholar
  214. A. I. Vainshtain and V. I. Zakharov, Phys. Rev. Lett. 72B, 368 (1978).Google Scholar
  215. 43.
    W. Ochs, Nucl. Phys. B118, 397 (1977), and Proceedings of Moriond Conference (1977), Vol 2.Google Scholar
  216. 44.
    We use the term “leading twist” to refer to contributions with the minimal Q2-fall-off, and “higher twist” to refer te operators or contributions which are suppressed by one or more powars of Q2 - generally because more than the minimal number of fields are involved in the hard scattering subprocess.Google Scholar
  217. 45.
    A phenomenological analysis of R = σLT due to contributions such as (8.7) is given in L. Abbott, E. L. Berger, R. Blankenbecler and G. L. Kane, SLAC-PUB-2327 (1979).Google Scholar
  218. E. L. Berger and S. J. Brodsky, Phys. Rev. Lett. 42, 940 (1979).Google Scholar
  219. 46.
    R. Blankenbecler and I. Schmidt, Phys. Rev. D16, 1318 (1977).Google Scholar
  220. 47.
    L. Abbott and R. M. Barnett, SLAC-PUB-2325 (1979);Google Scholar
  221. L. Abbott, W. B. Atwood and R. M. Barnett, SLAC-PUB-2227 (1979);Google Scholar
  222. R. G. Roberts and D. Duke, Phys. Lett. 85B, 289 (1979)Google Scholar
  223. D. Perkins, private communication.Google Scholar
  224. 48.
    L. Okun, private communication; V. Novikov et al., Ref. 39.Google Scholar
  225. 49.
    S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970);Google Scholar
  226. G. West, Phys. Rev. Lett. 24, 1206 (1970);Google Scholar
  227. J. D. Bjorken and J. Kogut, Phys. Rev. D8, 1341 (1973);Google Scholar
  228. E. D. Bloom and F. J.-Gilman, Phys. Rev. Lett. 25, 1140 (1970).Google Scholar
  229. 50.
    The analysis of Chapter 3 of Ref. 2 is incorrect on this point; the correct argument of as in the loop integrals in XXXX not XXXX.Google Scholar
  230. 51.
    Z. F. Ezawa, Nuovo Cimento 23A, 271 (1974).Google Scholar
  231. G. R. Farrar et al., and A. F. Vainstain et al., Ref. 42.Google Scholar
  232. 52.
    G. R. Farrar and D. Jackson, Ref. 42.Google Scholar
  233. 53.
    a) E. L. Berger and S. J. Brodsky, Ref. 45. (b) R. Raitio, private communication.Google Scholar
  234. K. J. Anderson et al., Phys. Rev. Lett. 43, 1219 (1979).Google Scholar
  235. 55.
    S. D. Ellis, P. V. Landshoff and M. Jacob, Nucl. Phys. B108, 93 (1978);Google Scholar
  236. P. V. Landshoff and M. Jacob, Nucl. Phys. B113, 395 (1976)Google Scholar
  237. V. Landshoff and M. Jacob, Phys. Rep. 48, 285 (1978). For a detailed discussion see R. Stroynowski, this volume.Google Scholar
  238. 56.
    R. Blankenbecler, S. J. Brodsky and J. F. Gunion, Phys. Rev. D18, 900 (1978) and references therein; D. Sivers et al., Ref. 1.Google Scholar
  239. 57.
    P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. D10, 891 (1974);Google Scholar
  240. M. K. Chase and W. J. Stirling, Nucl. Phys. B133, 157 (1978).Google Scholar
  241. 58.
    J. F. Gunion and D. Jones, Phys. Rev. 20, 232 (1979).Google Scholar
  242. M. Jacob and P. V. Landshoff, Phys. Rep. 48, 285 (1978). For 7.5 = pT = 14.0 GeV/c, XXXX and 62.4 GeV, a good fit to the ISR-CCOR data is obtained with Edσ/d3p(pp → π°X) = pT−5.1 ± 0.4f(xT); CCOR collaboration, Phys. Lett. 79B, 505 (1978).Google Scholar
  243. 59.
    D. Antreasyan et al., Phys. Rev. D19, 764 (1979)Google Scholar
  244. D. Antreasyan et al., Phys. Lett. 38, 112 (1977);Google Scholar
  245. J. W. Cronin et al., Phys. Rev. D11, 3105 (1975). See also M. Shochet, Proceedings of the XVIII International Conference on High Energy Physics, Tbilisi (1976).Google Scholar
  246. 60.
    A simplified analysis of charge correlations is given in S. J. Brodsky, Proceedings of the VII International Symposium on Multiparticle Dynamics, Kaysersberg, France, June (1977).Google Scholar
  247. 61.
    R. P. Feynman, R. D. Field and G. C. Fox, CALT-68–651 (1978).Google Scholar
  248. A. P. Contogouris, R. Gaskell and S. Papadopoulos, Phys. Rev. D17, 2314 (1978);Google Scholar
  249. A. P. Contogouris, McGill preprint (1978);Google Scholar
  250. J. F. Owens and J. D. Kimel, Phys. Rev. D18, 3313 (1978);Google Scholar
  251. J. F. Owens, FSU-HEP-780609 (1978), Phys. Lett. 76B, 85 (1978);Google Scholar
  252. J. Ranft and G. Ranft, preprints KMU-HEP-7806 and 7805 (1978), Lett. Nuovo Cimento 20, 669 (1979);Google Scholar
  253. M. Fontannaz, Nucl. Phys. B132, 452 (1978).Google Scholar
  254. M. G. Albrow et al., NBI preprints (1978);Google Scholar
  255. R. Moller, Symposium on Jets in High Energy Collisions (1978); K. H. Hansen, presented to the XIX International Conference on High Energy Physics, Tokyo (1978), Nucl. Phys. B135, 461 (1978).Google Scholar
  256. 63.
    H. Frisch, this volume.Google Scholar
  257. 64.
    G. Fox, private communication.Google Scholar
  258. 65.
    R. D. Field, CALT-68–683 (presented at the XIX International Conference on High Energy Physics, Tokyo, 1978, and references therein); R. Field, R. P. Feynman and G. C. Fox, Phys. Rev. D18, 3320 (1978) and references therein.Google Scholar
  259. 66.
    See S. J. Brodsky, R. R. Horgan and W. E. Caswell, Phys. Rev. D18, 2415 (1978).Google Scholar
  260. M. Chase, Nucl. Phys. B145, 189 (1978).Google Scholar
  261. References — Chapters 10–11 and AppendicesGoogle Scholar
  262. 1.
    See, e.g., S. J. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971).Google Scholar
  263. V. M. Budnev et al., Phys. Rep. 15C, (1975);Google Scholar
  264. H. Terazawa, Rev. Mod. Phys. 45, 615 (1973);Google Scholar
  265. S. J. Brodsky, H. Terazawa and T. Walsh in the Proceedings of the International Colloquium on Photon-Photon Collisions, published in Supplement au Journal de Physique, Vol. 35 (1974).Google Scholar
  266. G. Grammer and T. Kinoshita, Nucl. Phys. B80, 461 (1974);Google Scholar
  267. R. Bhattacharya, J. Smith and G. Grammer, Phys. Rev. D15, 3267 (1977);Google Scholar
  268. J. Smith J. Vermaseren and G. Grammer, Phys. Rev. D15, 3280 (1977).Google Scholar
  269. 2.
    S. J. Brodsky, T. A. DeGrand, J. F. Gunion and J. H. Weis, Phys. Rev. Lett. 41, 672 (1978)Google Scholar
  270. S. J. Brodsky, T. A. DeGrand, J. F. Gunion and J. H. Weis, Phys. Rev. D19, 1418 (1979).Google Scholar
  271. 3.
    C. H. Llewellyn Smith, Phys. Lett. 79B, 83 (1978).Google Scholar
  272. 4.
    K. Kajantie, Phys. Scripta 29, 230 (1979);Google Scholar
  273. K. Kajantie and R. Raitio, University of Helsinki preprint HU-TFT-79–13.Google Scholar
  274. 5.
    W. R. Frazer and J. F. Gunion, Phys. Rev. D20, 147 (1978).Google Scholar
  275. 6.
    T. A. DeGrand, Phys. Lett. 84B, 478 (1979).Google Scholar
  276. K. A. Jenkins et al., Phys. Rev. Lett. 40, 425 (1978).Google Scholar
  277. 8.
    Inaccuracies due to the use of the equivalent photon approximation also tend to cancel in this ratio. Note that the equivalent photon approximation is dependent on the choice of gauge and Lorentz frame used to define transverse polarization of virtual photons. The EPA defined by S. J. Brodsky et al., in Ref. 1 refers to the radiation gauge in the e+e CM; it has the advantage that the EPA for each photon factorizes and it can be used for double-tagged events. The EPA defined by C. Carimalo, P. Kessler and J. Parisi, College de France preprint (1979) refers to the radiation gauge of the γγ CM; it has the advantage of a simple connection with γγ → X helicity amplitudes, and in some cases it is a more accurate estimate at small sγγ/Q2. However, the EPA does not factorize in this case. See also J. H. Field, DESY preprint 79/78. The EPA is of course inapplicable in kinematical regions where the longitudinal-scalar contributions are important.Google Scholar
  278. 9.
    W. Wagner, report to the DESY Workshop on Jets, 1979 (unpublished).Google Scholar
  279. 10.
    R. Cahn and J. F. Gunion, Phys. Rev. D20, 2253 (1979);Google Scholar
  280. K. Kajantie and R. Raitio, Phys. Lett. 87B, 133 (1979).Google Scholar
  281. A. Devoto, J. Pumplin, W. Repko and G. L. Kane, Michigan State University preprint (1979).Google Scholar
  282. 11.
    E. Witten, Nucl. Phys. B120, 189 (1977).Google Scholar
  283. See also Refs. 2, 3, 5, and 6, Yu. L. Dokshitser, D. I, Dyakanov and S. I. Troyan, Stanford Linear Accelerator Center translation SLAC-TRANS-183, translated for Proceedings of the 13th Leningrad Winter School on Elementary Particle Physics, 1978;Google Scholar
  284. R. J. DeWitt, L. M. Jones, J. D. Sullivan, D. E. Willen and H. W. Wyld, Phys. Rev. D19, 2046 (1979);Google Scholar
  285. C.-M. Wu, CERN preprint (1979).Google Scholar
  286. 12.
    This QCD scaling property was pointed out first by C. H. Llewellyn Smith, Ref. 3.Google Scholar
  287. 13.
    This approach is due to R. J. DeWitt et al., Ref. 11.Google Scholar
  288. 14.
    This result was first derived in Yu. L. Dokshitser et al., Ref. 11. See also Ref. 1. Note that this leading logarithm analysis does not take into account corrections from the gluon transverse momentum phase space limit discussed in Chapter 4.Google Scholar
  289. 15.
    W. A. Bardeen and A. J. Buras, Phys. Rev. D20, 166 (1979).Google Scholar
  290. 16.
    M. Chase, DAMTP 78/15 (1979). See also T. Walsh, Ref. 1.Google Scholar
  291. 17.
    G. P. Lepage and S. J. Brodsky, Phys. Lett. 87B, 359 (1979).Google Scholar
  292. 18.
    H. Suura, T. F. Walsh and B. L. Young, Lett. Nuovo Cimento 4, 505 (1972).Google Scholar
  293. 19.
    Detailed results will be presented in S. J. Brodsky and G. P. Lepage (to be published).Google Scholar
  294. 20.
    See also S. J. Brodsky, F. E. Close and J. F. Gunion, Phys. Rev. D6, 177 (1972).Google Scholar
  295. 21.
    For other approaches along these lines see R. Blankenbecler and S. J. Brodsky, Phys. Rev. D10, 2973 (1973);Google Scholar
  296. D. Sivers, R. Blankenbecler and S. J. Brodsky, Phys. Rep. 23C, 1 (1976);Google Scholar
  297. S. J. Brodsky and G. P. Lepage, in “Quantum Chromodynamics,” eds. by F. Henyey and W. Frazer (AIP, 1979 );Google Scholar
  298. T. DeGrand, Nucl. Phys. D151, 485 (1979).Google Scholar
  299. 22.
    For a detailed discussion, see W. E. Caswell, R. R. Horgan and S. J. Brodsky, Phys. Rev. D18, 2415 (1978).Google Scholar
  300. 23.
    SeeChapter 8 for references.Google Scholar
  301. 24.
    See also S. J. Brodsky and J. F. Gunton, Phys. Rev. D19, 1005 (1979).Google Scholar
  302. 25.
    This result (based on earlier work in collaboration with M. Scadron, J. F. Gunion and N. Fuchs) correctly summarizes the spin effects noted in Chapter 8; a general proof has not been given.Google Scholar
  303. 26.
    O. Nachtmann, Nucl. Phys. B63, 237 (1973)Google Scholar
  304. O. Nachtmann, Nucl. Phys. B78, 455 (1974).Google Scholar
  305. H. Georgi and H. D. Politzer, Phys. Rev. D14, 1829 (1976);Google Scholar
  306. A. De Rujula, A. H. Georgi and H. D. Politzer, Ann. of Phys. 103, 315 (1977)Google Scholar
  307. A. De Rujula, A. H. Georgi and H. D. Politzer, Phys. Rev. D15, 2495 (1977);Google Scholar
  308. R. Barbieri, J. Ellis, M. K. Gaillard and G. G. Ross, Phys. Lett. 64B, 171 (1976)Google Scholar
  309. R. Barbieri, J. Ellis, M. K. Gaillard and G. G. Ross, Nucl. Phys. B117, 50 (1976).Google Scholar
  310. A detailed review of mass corrections in QCD is given by A. J. Burgs, Fermilab preprint 79/17-Thy (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Stanley J. Brodsky
    • 1
  • G. Peter Lepage
    • 2
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA
  2. 2.Laboratory of Nuclear StudiesCornell UniversityIthacaUSA

Personalised recommendations