Advertisement

Kosterlitz-Thouless Transition and Mayer Expansion

  • Keiichi R. Ito
Part of the Progress in Physics book series (PMP, volume 11)

Summary

We discuss the Kosterlitz-Thouless transition in the 2D XY model by the Mayer expansion after transforming the model into a 2D Coulomb gas system by the duality transformation.

Keywords

Virial Coefficient Charge Conjugation Duality Transformation Loop Graph Virial Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Berezinskii, Sov.Phys. JETP 32 (1971) 493.Google Scholar
  2. [2]
    D.D. Brydgesand P. Federbush, J.Math.Phys. 19 (1978) 2064CrossRefGoogle Scholar
  3. D.D. Brydgesand P. Federbush, Comm. Math.Phys. 73 (1980) 197.CrossRefGoogle Scholar
  4. [3]
    J. Bricmont, J.R. Fontaine, J.L. Lebowitz, T. Spencer, and E. Lieb, Commun.Math.Phys. 78 (1980) 281, 363, 545.Google Scholar
  5. [4]
    L. Faddeev and L. Takhtajan, Integrability of Quantum 0(3) nonlinear a-Model, (LOMI Preprint, E-4–83).Google Scholar
  6. [5]
    J. Fröhlich and T. Spencer, Phys.Rev.Letters 46 (1981) 1006CrossRefGoogle Scholar
  7. J. Fröhlich and T. Spencer, Commun.Math.Phys. 81 (1981) 525.Google Scholar
  8. [6]
    J. Fröhlich and T. Spencer, Commun.Math.Phys. 83 (1982) 411.CrossRefGoogle Scholar
  9. [7]
    J.R. Fontaine, J. Statistical Phys. 26 (1981) 767.CrossRefGoogle Scholar
  10. [8]
    K. Gawedzki and A. Kupiainen, Ann.Phys. 147 (1983) 198.CrossRefGoogle Scholar
  11. [9]
    K. Gawedzki and A. Kupiainen, Commun.Math.Phys. 81 (1981) 191.Google Scholar
  12. [10]
    K.R. Ito, J. Statistical Phys. 29 (1982) 747.CrossRefGoogle Scholar
  13. [11]
    K.R. Ito, Study of the Kosterlitz-Thouless Transition by the Mayer Expansion, -Finiteness of the Perturbations -, (Bedford College Preprint (1983), to appear in Ann. Phys. (1984).)Google Scholar
  14. K.R. Ito, Phys.Letters 94A (1983) 339.Google Scholar
  15. [12]
    M. Lüscher and B. Berg, Commun.Math.Phys. 69 (1979) 57:Google Scholar
  16. Y. Iwasaki, Phys.Rev.Letters 47 (1981) 754.CrossRefGoogle Scholar
  17. [13]
    J. Jose, L. Kadanoff, S. Kirkpatrick and S. Nelson, Phys.Rev. B16 (1977) 1217.CrossRefGoogle Scholar
  18. [14]
    J. Kosterlitz and J. Thouless, J.Phys. C6 (1973) 1181: J. Kosterlitz, J.Phys. C7 (1974) 1047.Google Scholar
  19. [15]
    P. Kullish, Contribution to these proceedings.Google Scholar
  20. [16]
    McBryan and T. Spencer, Commun.Math.Phys. 53 (1977) 99.CrossRefGoogle Scholar
  21. [17]
    G. Mack and M. Göpfert, Commun.Math.Phys. 82 (1982) 545.CrossRefGoogle Scholar
  22. [18]
    A. Polyakov and P. Wiegman, Theory of Non-Abelian Goldstone Bosons, (Landau Institute Preprint, 1983 ).Google Scholar
  23. [19]
    D. Ruelle, Statistical Mechanics, Rigorous Results, Chap. 4 ( Benjamin, New York 1969 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Keiichi R. Ito
    • 1
  1. 1.Department of MathematicsBedford College University of LondonLondonUK

Personalised recommendations