Part 4. Secondary Gage—Differential Manometers

  • Yuri A. Atanov


All instruments and devices based on the functional or tabulated relationship of some measured quantity x and pressure p are known as secondary gages. Such a relationship or pressure scale is determined by calibration against a primary standard instrument such as a mercury column or free piston gage (see Chapter 4, Parts 1 and 3). Generally speaking, any physical, chemical or mechanical characteristic of a substance may be utilized in constructing such secondary gages. Practical convenience, however, rejects a considerable number of gages. For example, the variation of the chemical reaction rate cannot be utilized due to the difficulty of the direct measurement of the reaction rate. Hence, the obvious fundamental requirement for a secondary gage is the possibility of direct and convenient measurement of the chosen parameter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. 1.
    Alexeyev, K. A., Y. A. Atanov and L. L. Burova. Proceedings of the Institutes of the USSR Standards Committee, 75, 44 (1964).Google Scholar
  2. 2.
    Andrews, L. E. Elastic Elements of Instruments (1966).Google Scholar
  3. 3.
    ASME Publications: High Pressure Measurements. Paper N 53-YKD-I (1953).Google Scholar
  4. 4.
    Atanov, Y. A. and E. M. Ivanova. Measurement Technique, 14, 247 (1971).CrossRefGoogle Scholar
  5. 5.
    Atanov, Y. A. and E. M. Ivanova. Spec. Publ. US Nat. Bur. Stand. No. 326, 49 (1971).Google Scholar
  6. 6.
    Bakhvalova, V. V. and M. K. Zhokhovsky. Proceedings of the Institute of the USSR Standards Committee, 75, 55 (1964).Google Scholar
  7. 7.
    Biles, M. B. Instruments, 24, 159 (1952).Google Scholar
  8. 8.
    Bogdanov, V. S., Y. L. Levin, S. S. Sekoyan and Y. I. Shimin. Spec. Publ. US Nat. Bur. Stand. No. 326, 297 (1971).Google Scholar
  9. 9.
    Bridgman, P. W. Proc. Amer. Acad. Arts. Sci. 47, 321 (1912).CrossRefGoogle Scholar
  10. 10.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 72, 157 (1939).CrossRefGoogle Scholar
  11. 11.
    Darling, H. E. and D. H. Newhall. Trans. Amer. Soc. Mech. Engrs, 75, 311 (1953).Google Scholar
  12. 12.
    Ewing, C. T., J. R. Spann, J. P. Stone, E. W. Steinkuller and R. R. Miller. J. Chem. Engng Data, 15, 508 (1970).CrossRefGoogle Scholar
  13. 13.
    Gielessen, J. Z. Angew. Phys. 8, 193 (1956).Google Scholar
  14. 14.
    Kardos, G. J. Basic Engng, 81, 645 (1959).Google Scholar
  15. 15.
    Lippmann, H. and M. Richard. Feingeratechnik, 19, 368 (1970).Google Scholar
  16. 16.
    Lisell, E. Uppsala Univ. Årsskrift, 1, 1 (1903).Google Scholar
  17. 17.
    Malbrunot, P. F., P. A. Meunier, G. M. Scatena, W. H. Mears, K. P. Murphy and J. V. Sinka. J. Chem. Engng Data, 13, 16 (1968).CrossRefGoogle Scholar
  18. 18.
    Maslach, G. J. Rev. Sci. Instrum. 23, 367 (1952).CrossRefGoogle Scholar
  19. 19.
    Spec. Publ. US Nat. Bur. Stand. No. 326, 314 (1971).Google Scholar
  20. 20.
    Tech. News. Bull., US Nat. Nat. Bur. Stand. 40, 96 (1956).Google Scholar
  21. 21.
    Nogatkin, A. G. Priborostroyenie (USSR), 5, 13 (1956).Google Scholar
  22. 22.
    Schulze, A. Z. Metallkunde, 32, 317 (1940).Google Scholar
  23. 23.
    Waxman, M. and T. Chen. J. Res. Nat. Bur. Stand. 69c, 27 (1967).Google Scholar
  24. 24.
    Waxman, M. and J. R. Hastings. J. Res. Nat. Bur. Stand. 75c, 165 (1971).Google Scholar
  25. 25.
    Zhokhovsky, M. K. Pressure and Vacuum. Mashgiz: Moscow (1952).Google Scholar
  26. 26.
    Zhokhovsky, M. K. Izmeritelnaya Tekhnika, 7, 11 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Yuri A. Atanov
    • 1
  1. 1.Physical and Radiotechnical Measurements InstituteMendeleevo, Moscow RegionUSSR

Personalised recommendations