Determination of Thermodynamic Properties from the Experimental p-V-T Relationships

  • R. D. McCarty


The engineering applications of classical thermodynamics have grown steadily over the years. Today the need for thermodynamic properties in science and industry is greater than ever before in history. Further, their needs are continually changing to include properties of a greater variety, at pressures and temperatures of an increasing range and with accuracies that tax the state of the art. In recent years these needs have been accelerated by the tremendous worldwide effort in the field of space exploration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

IX. References

  1. 1.
    Beattie, J. A. and O. C. Bridgeman. Proc. Amer. Acad. Arts Sci. 63, 229 (1929).CrossRefGoogle Scholar
  2. 2.
    Benedict, M., G. B. Webb and L. C. Rubin. J. Chem. Phys. 8, 334 (1940).CrossRefGoogle Scholar
  3. 3.
    Bender, E., Proceedings of the Fifth Symposium on Thermophysical Properties, p 227. American Society of Mechanical Engineers: New York (1970).Google Scholar
  4. 4.
    Björck, Ake. Nordisk Tidskrift for Informationsbehandling (Copenhagen), 7, 1 (1967).Google Scholar
  5. 5.
    Bridgman, P. W. The Thermodynamics of Electrical Phenomena in Metals and a Condensed Collection of Thermodynamic Formulas. Dover Publications: New York (1961).Google Scholar
  6. 6.
    Coleman, T. C. The thermodynamic properties of nitrogen’. Res. Rep. No. 11 Idaho University: Moscow (1970).Google Scholar
  7. 7.
    Goodwin, R. D. and R. Prydz. ‘Densities of compressed liquid methane, and the equation of state’. Publ. US Nat. Bur. Stand, (in press) (1971).Google Scholar
  8. 8.
    Hildebrand, F. B. Introduction to Numerical Analysis. McGraw-Hill: New York (1956).Google Scholar
  9. 9.
    Hust, J. G. and R. D. McCarty. Cryogenics, 7, 200 (1967).CrossRefGoogle Scholar
  10. 10.
    McCarty, R. D. and R. B. Stewart. Advances in Thermophysical Properties at Extreme Temperatures and Pressures, p 84. American Society of Mechanical Engineers: New York (1965).Google Scholar
  11. 11.
    McCarty, R. D. and L. A. Weber. ‘Thermophysical properties of oxygen from the freezing liquid line to 600 R for pressures to 5000 psia’ Tech. Note US Bur. Stand. No. 384 (1971).Google Scholar
  12. 12.
    Newman, M. Matrix Computations, Survey of Numerical Analysis Vol. VI, p 222. Edited by John Todd. McGraw-Hill: New York (1962).Google Scholar
  13. 13.
    Newman, M. and J. Todd. J. Soc. Industr. Appl. Math. 6, 466 (1958).CrossRefGoogle Scholar
  14. 14.
    Prydz, R. and G. R. Straty. ‘The thermodynamic properties of compressed gaseous and liquid fluorine; Tech. Note US Nat. Bur. Stand. No 392 (1970).Google Scholar
  15. 15.
    Roder, H. M., L. A. Weber and R. D. Goodwin. ‘Thermodynamic and related properties of parahydrogen from the triple point to 100 K at pressures to 340 atmospheres’. US Nat. Bur. Stand. Monogr. No. 94 (1965).Google Scholar
  16. 16.
    Stewart, R. B. ‘hermodynamic properties of oxygen’. Ph.D. Thesis Iowa University: Ames (1966).Google Scholar
  17. 17.
    Strobridge, T. R. ‘The thermodynamic properties of nitrogen, from 64 to 300 K between 0.1 and 200 atmospheres;. Tech. Note US Nat. Bur. Stand. No. 129 (1962).Google Scholar
  18. 18.
    Van der Waals, J. D. Over de Continuiteit van den Gasen. Vloeistofloestand: Leyden (1873).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • R. D. McCarty
    • 1
  1. 1.Cryogenics DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations