Measurement of p-V-T Properties of Gases and Gas Mixtures at Low Pressure

  • G. Saville


Low pressure p-V-T measurements on gases have a long history and date back to the work of Boyle and Charles in the seventeenth and eighteenth centuries when the foundations of what we now know as the perfect gas laws were laid down. It was not, however, until the nineteenth century that extensive use began to be made of such measurements when the need for the gas thermometer became apparent and likewise the need for determining atomic weights (or more correctly, molecular weights from which atomic weights could be derived). Both of these needs have continued through into the twentieth century and the gas thermometer remains to this day as the fundamental standard of temperature. The situation with regard to atomic weights has, however, changed considerably over the last thirty years. Mass spectrometry has improved to such an extent that it is unlikely that gas volumetric methods will be used again, in the foreseeable future, for the determination of atomic weights. Thus, for example, the ratio of the atomic masses 12C to 160 has been determined mass spectrometrically to better than one part in 107. This high precision has shown also that polynuclidic elements (elements with more than one naturally occurring isotope) have an overall atomic weight which varies with the source of the material. Thus in the 1969 IUP AC atomic weights table, oxygen is given as 15.9994 ± 0.0003 where the error bounds reflect variability of source and not the experimental uncertainty in determining the atomic weight of a particular sample of the gas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

XIII. References

  1. 1.
    Andon, R. J. L., J. D. Cox, E. F. G. Herington and J. F. Martin. Tram. Faraday Soc. 53, 1074 (1957).CrossRefGoogle Scholar
  2. 2.
    Barber, C. R. Temperature, Its Measurements and Control in Science and Industry, Vol. III, Pt 1, p 103, Reinhold: New York (1962).Google Scholar
  3. 3.
    Beattie, J. A., M. Benedict, B. E. Blasidell and J. Kaye, J. Chem. Phys. 42, 2274 (1965).Google Scholar
  4. 4.
    Beattie, J. A., D. D. Jacobus, J. M. Gaines, M. Benedict and B. E. Blaisdell. Proc. Amer. Acad. Arts Sci. 74, 327 (1940–42).CrossRefGoogle Scholar
  5. 5.
    Berry, R. J. Canad. J. Phys. 36, 740 (1958).CrossRefGoogle Scholar
  6. 6.
    Bigg, P. H. Brit. J. Appl. Phys. 15, 1111 (1964).CrossRefGoogle Scholar
  7. 7.
    Blaisdell, R. E. J. Maths Phys. 19, 186, 217 and 228 (1940).Google Scholar
  8. 8.
    Bonhoure, J. and J. Terrien. Metrologia, 4, 59 (1968).CrossRefGoogle Scholar
  9. 9.
    Borovick-Romanov, A. C., P. G. Strelkov, M. P. Orlova and D. N. Astrov. Temperature, Its Measurement and Control in Science and Industry, Vol. III, Pt 1, p 113. Reinhold: New York (1962).Google Scholar
  10. 10.
    Bottomley, G. A. and C. G. Reeves. Trans. Faraday Soc. 53, 1455 (1957).CrossRefGoogle Scholar
  11. 11.
    Bottomley, G. A., C. G. Reeves and R. Whytlaw-Gray. Proc. Roy. Soc. A. 246, 504 (1958).CrossRefGoogle Scholar
  12. 12.
    Bottomley, G. A. and T. H. Spurling, Austral. J. Chem. 17, 501 (1964).CrossRefGoogle Scholar
  13. 13.
    Brewer, J. and G. W. Vaughn. J. Chem. Phys. 50, 2960 (1969).CrossRefGoogle Scholar
  14. 14.
    Burnett, E. S. J. Appl. Mech. Trans. Amer. Soc. Mech. Engrs, A3, 136 (1936).Google Scholar
  15. 15.
    Byrne, M. A., M. R. Jones and L. A. K. Staveley. Trans. Faraday Soc. 64, 1747 (1968).CrossRefGoogle Scholar
  16. 16.
    Casado, F. L., D. S. Massie and R. Whytlaw-Gray. Proc. Roy. Soc. A, 207, 483 (1951).CrossRefGoogle Scholar
  17. 17.
    Compton, J. P. Metrologia, 6, 103 (1970).CrossRefGoogle Scholar
  18. 18.
    Cope, J. O. Rev. Sci. Instrum. 33, 980 (1962).CrossRefGoogle Scholar
  19. 19.
    Cook, D. Canad. J. Chem. 35, 268 (1957).CrossRefGoogle Scholar
  20. 20.
    Constabaris, G., J. H. Singleton and G. D. Halsey. J. Phys. Chem. 63, 1350 (1959).CrossRefGoogle Scholar
  21. 21.
    Di Zio, S. F., M. M. Abbott, D. Zibello and H. C. Van Ness. Industr. Engng Chem. (Fundamentals), 5 569 (1966).CrossRefGoogle Scholar
  22. 22.
    Douslin, D. R. and A. Osborn. J. Sci. Instrum. 42, 369 (1965).CrossRefGoogle Scholar
  23. 23.
    Fender, B. E. F. and G. D. Halsey. J. Chem. Phys. 36, 1881 (1962).CrossRefGoogle Scholar
  24. 24.
    Gould, F. A. and T. Vickers. J. Sci. Instrum. 29, 85 (1952).CrossRefGoogle Scholar
  25. 25.
    Guildner, L. A., H. F. Stimson, R. E. Edsinger and R. L. Anderson. Metrologia, 6, 1 (1970).CrossRefGoogle Scholar
  26. 26.
    Haworth, W. S. and L. E. Sutton. J. Phys. (E), Sci. Instrum. 3, 271 (1970).CrossRefGoogle Scholar
  27. 27.
    Haworth, W. S. and L. E. Sutton. Trans. Faraday Soc. 67, 2907 (1971).CrossRefGoogle Scholar
  28. 28.
    ‘International Practical Temperature Scale of 1968’. Metrologia, 5, 35 (1969).Google Scholar
  29. 29.
    Johnston, H. L. and H. R. Weimer. J. Amer. Chem. Soc. 56, 625 (1934).CrossRefGoogle Scholar
  30. 30.
    Kistemaker, J. Physica, 11, 270 and 277 (1945).CrossRefGoogle Scholar
  31. 31.
    Knobler, C. M. Rev. Sci. Instrum. 38, 184 (1967).CrossRefGoogle Scholar
  32. 32.
    Knobler, C. M., J. J. M. Beenakker and H. F. P. Knaap. Physica, 25, 909 (1959).CrossRefGoogle Scholar
  33. 33.
    Lambert, B. and C. S. G. Phillips. Phil. Trans. A, 242, 415 (1950).CrossRefGoogle Scholar
  34. 34.
    Lewis, A. and D. W. G. Style. Nature, London, 139, 631 (1937).CrossRefGoogle Scholar
  35. 35.
    Lichtenthaler, R. N., B. Schramm and K. Schäfer. Ber. Bunsenges. Phys. Chem. 73, 36 (1969).Google Scholar
  36. 36.
    Lovejoy, D. R. Rev. Sci. Instrum. 32, 41 (1961).CrossRefGoogle Scholar
  37. 37.
    McGlashan, M. L. and D. J. B. Potter. Proc. Roy. Soc. A, 267, 478 (1962).CrossRefGoogle Scholar
  38. 38.
    Moessen, G. W., J. G. Aston and R. G. Ascah. Temperature, Its Measurement and Control in Science and Industry, Vol. III, Pt 1, p 91. Reinhold: New York (1962).Google Scholar
  39. 39.
    Moser, H. Temperature, Its Measurement and Control in Science and Industry, Vol. II, p 103. Reinhold: New York (1955).Google Scholar
  40. 40.
    Moser, H., J. Otto and W. Thomas. Z. Phys. 147, 59 (1957).CrossRefGoogle Scholar
  41. 41.
    Pool, R. A. H., G. Saville, T. M. Herrington, B. D. C. Shields and L. A. K. Staveley. Trans. Faraday Soc. 58, 1692 (1962).CrossRefGoogle Scholar
  42. 42.
    Preston-Thomas, H. and C. G. M. Kirby. Metrologia, 4, 30 (1968).CrossRefGoogle Scholar
  43. 43.
    Taylor, B. N., W. H. Parker and D. N. Langenberg. Rev. Mod. Phys. 41, 375 (1969).CrossRefGoogle Scholar
  44. 44.
    Thomaes, G. and R. van Steenwinkel. Rev. Sci. Instrum. 31, 825 (1960).CrossRefGoogle Scholar
  45. 45.
    Ury, J. F. Metrologia, 5, 11 (1969).CrossRefGoogle Scholar
  46. 46.
    Varekamp, F. H. and J. J. M. Beenakker. Physica, 25, 889 (1959).CrossRefGoogle Scholar
  47. 47.
    Weir, R. D., I. Wynn Jones, J. S. Rowlinson and G. Saville. Trans. Faraday Soc. 63, 1320 (1967).CrossRefGoogle Scholar
  48. 48.
    White, D. and J. Hilsenrath. Rev. Sci. Instrum. 29, 648 (1958).CrossRefGoogle Scholar
  49. 49.
    Zandbergen, P. and J. J. M. Beenakker. Physica, 33, 343 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • G. Saville
    • 1
  1. 1.Department of Chemical Engineering and Chemical TechnologyImperial CollegeLondonUK

Personalised recommendations