Resonant Techniques

The Continuous Saturation Method
  • K. J. Standley
  • R. A. Vaughan
Part of the Monographs on Electron Spin Resonance book series (MESR)


In the last chapter it was pointed out that one of the very serious drawbacks of the non-resonant method is that the parameter actually measured may not in general be simply related to the spin-lattice relaxation time T1 defined in Chapter I; it is more likely instead to be a weighted mean of the relaxation rates of all populated paramagnetic states. With the advent of spin resonance techniques, however, it became possible to measure the actual population difference between a selected pair of energy levels, and this opened up a way of determining the relaxation behaviour related to individual transitions.


Power Level Spin System Relaxation Phenomenon Saturation Behaviour Saturation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloembergen, N., Purcell, E. M. and Pound, R. V., Phys. Rev., 1948 73, 679.ADSCrossRefGoogle Scholar
  2. 2.
    Bloch, F., Phys. Rev., 1946, 70, 460.ADSCrossRefGoogle Scholar
  3. 3.
    Slichter, C. P., and Purcell, E. M. , Phys. Rev., 1949, 76, 466.Google Scholar
  4. 4.
    Schneider, E. E., and England, T. S. , Physica, 1951, 17, 221.ADSCrossRefGoogle Scholar
  5. 5.
    Eschenfelder, A. H., and Weidner, R. T. , Phys. Rev., 1953, 92, 869.ADSCrossRefGoogle Scholar
  6. 6.
    Feher, G., and Scovil, H. E. D. , Phys. Rev., 1957, 105, 760.ADSCrossRefGoogle Scholar
  7. 7.
    Lloyd, J. P., and Pake, G. E. , Phys. Rev., 1954, 94, 579.ADSCrossRefGoogle Scholar
  8. 8.
    Poole, C. P., Electron Spin Resonance (John Wiley Interscience, 1967x).Google Scholar
  9. 9.
    Portis, A. M. , Phys. Rev., 1953, 91, 1071.ADSCrossRefGoogle Scholar
  10. 10.
    Barlow, H. M., and Cullen, A. L., Microwave Measurements (Constable Co. Ltd, 1950).Google Scholar
  11. 11.
    Vaughan, R. A. To be published.Google Scholar
  12. 12.
    Taylor, P. F., Ph.D. thesis, St Andrews University, 1968.Google Scholar
  13. 13.
    Kipling, A. L., Smith, P. W., Vanier, J., and Woonton, G. A. , Can. J. Phys., 1961, 39, 1859.ADSCrossRefGoogle Scholar
  14. 14.
    Singer, L. S., and Kommandeur, J., J. Chem. Phys., 1961, 34, 133.ADSCrossRefGoogle Scholar
  15. 15.
    Lloyd, J. P., and Pake, G. E. , Phys. Rev., 1953, 92, 1576.ADSCrossRefGoogle Scholar
  16. 16.
    Bloembergen, N., and Wang, S., Phys. Rev., 1954, 93, 72.ADSCrossRefGoogle Scholar
  17. 17.
    Hervé, J., and Pescia, J., Proceedings of 12th Colloque Ampère, 1963, 335.Google Scholar
  18. 18.
    Pescia, J., and Hervé, J., ibid., 347.Google Scholar
  19. 19.
    Zueco, E., and Pescia, J., Comptes Rendu, 1965, 260, 3605.Google Scholar
  20. 20.
    Carruthers, J. A., and Rumin, N. C. , Can. J. Phys., 1965, 43, 576.ADSCrossRefGoogle Scholar
  21. 21.
    Jeffries, C. D., Dynamic Nuclear Orientation (John Wiley Interscience, 1963).Google Scholar
  22. 22.
    Strandberg, M. P. W. , Phys. Rev., 1958, 110, 65.ADSCrossRefGoogle Scholar

Copyright information

© K. J. Standley and R. A. Vaughan 1969

Authors and Affiliations

  • K. J. Standley
    • 1
  • R. A. Vaughan
    • 1
  1. 1.University of DundeeScotland

Personalised recommendations