Skip to main content

Interband Magneto-Optics in Small Band Gap Semiconductors and Semimetals

  • Chapter
Electronic Structures in Solids

Abstract

In the past few years interband and intraband magneto-optical experiments have been successful in determining information about the electronic energy band structure of a variety of semiconductors and semimetals. Representative general reviews of this work have been given by Lax,1 Dresselhaus and Dresselhaus,2 and Smith.3 The two classes of experiments are complementary and both may be necessary for a complete picture:

  1. (i)

    Intraband free carrier experiments (such as cyclotron resonance or free carrier Faraday rotation) in general give direct information about the effective mass or curvature of a single populated band.

  2. (ii)

    Interband magneto-optical experiments give energy gaps directly, and reduced masses (and g-values) for valence to conduction band transitions over a wide energy range, at different symmetry points in the Brillouin zone. In particular the interband magnetoreflection technique is necessary for opaque materials such as metals and semimetals, where transmission experiments are not possible. It has the advantage that it can be used to probe both full and empty bands, inaccessible by Fermi studies of the de Haas van Alphen type.

Supported by the U.S. Air Force Office of Scientific Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lax, in Semiconductors, ed. R. A. Smith (Academic Press, Inc., New York, 1963) p. 240.

    Google Scholar 

  2. G. Dresselhaus and M. S. Dresselhaus, in The Optical Properties of Solids, ed. J. Tauc (Academic Press, Inc., New York, 1966) p. 198.

    Google Scholar 

  3. S. D. Smith, Handbuch der Physik, XXV/2a, 234 (1967).

    Article  ADS  Google Scholar 

  4. A general review of k.p perturbation theory has been given by E. O. Kane, Semiconductors and Semimetals I, ed. Willardson and Beer (Academic “Press, Inc., New York, 1967) p. 75.

    Google Scholar 

  5. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869(1955).

    Article  ADS  MATH  Google Scholar 

  6. T. P. McLean, in Semiconductors, ed. R. A. Smith (Academic Press, Inc., New York, 1963) p. 479.

    Google Scholar 

  7. The treatment here follows that given by: L. M. Roth, B. L.x and S. Zwerdling, Phys. Rev. 114, 90 (1959).

    Article  ADS  Google Scholar 

  8. J. M. Luttinger, Phys. Rev. 102, 1030(1956).

    Article  ADS  MATH  Google Scholar 

  9. C. R. Pidgeon and R. N. Brown, Phys. Rev. 146, 575(1966).

    Article  ADS  Google Scholar 

  10. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  ADS  Google Scholar 

  11. S. H. Groves and W. Paul, Phys. Rev. Letters 11, 505 (1963).

    Article  Google Scholar 

  12. S. H. Groves, C. R. Pidgeon, A. W. Ewald and R. J. Wagner, to be published in Proc. Int. Conf. on Physics of Semiconductors, Moscow (1968).

    Google Scholar 

  13. S.H. Groves, R. N. Brown and C. R. Pidgeon, Phys. Rev. 161,779(1967).

    Article  ADS  Google Scholar 

  14. B. L. Booth and A. W. Ewald, to be published (Phys. Rev.).

    Google Scholar 

  15. C. R. Pidgeon and S. H. Groves, Phys. Rev. Letters 20, 1003 (1968); and a more extensive account to be published (Phys. Rev.)

    Article  ADS  Google Scholar 

  16. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  MATH  Google Scholar 

  17. C. R. Pidgeon and S. H. Groves, to be published in Proc. Int. Conf. on Physics of Semiconductors, Moscow (1968).

    Google Scholar 

  18. B. O. Seraphin and R. B. Hess, Phys. Rev. Letters 14, 138 (1965)

    Article  ADS  Google Scholar 

  19. B. O. Seraphin, Phys. Rev. 140, A1716 (1965).

    Article  ADS  Google Scholar 

  20. C. R. Pidgeon, S. H. Groves and J. Feinleib, Solid State Comm. 5, 677 (1967).

    Article  ADS  Google Scholar 

  21. E. J. Johnson, Phys. Rev. Letters 19, 352 (1967).

    Article  ADS  Google Scholar 

  22. D. M. S. Bagguley, M. L. A. Robinson and R. A. Stradling, Phys. Letters 6, 143 (1963).

    Article  ADS  Google Scholar 

  23. M. L. A. Robinson, Phys. Rev. Letters 17, 963(1966).

    Article  ADS  Google Scholar 

  24. R. L. Bell and K. T. Rogers [Phys. Rev. 152, 746 (1966)] have numerically solved the full Hamiltonian, truncated to order 240 × 240, for one assumed set of band parameters, with \(\overrightarrow H\) ∥ (100).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pidgeon, C.R. (1969). Interband Magneto-Optics in Small Band Gap Semiconductors and Semimetals. In: Haidemenakis, E.D. (eds) Electronic Structures in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6537-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6537-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6250-8

  • Online ISBN: 978-1-4899-6537-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics