Skip to main content

Kinetics of the Thermal Decomposition of Solids

  • Conference paper
Kinetics of Reactions in Ionic Systems

Part of the book series: Materials Science Research ((MSR))

Abstract

The kinetics of the thermal decomposition of solids are reviewed, with emphasis on topological considerations. The general model of nucleation in the bulk of the reactant is explored in detail and the kinetic equations appropriate to this model are derived. It is pointed out that a multistage nucleation process leads to a power law whenever the characteristic time for nucleus formation is long compared with the observation time, and that the assumption of equal rate constants for successive steps is unnecessarily restrictive. The problem of the induction period is examined and two possible reasons for the critical time t 0, namely the use of an incorrect model, and time-dependent growth rates (including, as a special case, aggregation without chemical decomposition) are advanced. Finally, the consequences of nucleation only on the surface of the reactant are mentioned briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. M. Jacobs and F. C. Tompkins, in: Chemistry of the Solid State (W. E. Garner, ed.) Butterworths, London, 1955, Chapter 7.

    Google Scholar 

  2. D. A. Young, Decomposition of Solids, Pergamon, Oxford, 1966.

    Google Scholar 

  3. I. Langmuir, J. Am. Chem. Soc. 38: 2263 (1917).

    Google Scholar 

  4. W. Fraenkel and W. Goez, Z. Anorg. Allg. Chemie 144: 45 (1925).

    Article  CAS  Google Scholar 

  5. W. G. Burgers and L. J. Groen, Discussions Faraday Soc. 23: 183 (1957).

    Article  Google Scholar 

  6. J. H. Hollomon and D. Turnbull, Progress in Metal Physics 4: 333 (1953).

    Article  CAS  Google Scholar 

  7. Kh. S. Bagdassarian, Acta Physicochim. URSS 20: 441 (1945).

    Google Scholar 

  8. A. Wischin, Proc. Roy. Soc. (London) Ser. A 172: 314 (1939).

    Article  CAS  Google Scholar 

  9. W. E. Garner and W. R. Southon, J. Chem. Soc. p. 1705 (1935).

    Google Scholar 

  10. N. F. H. Bright and W. E. Garner, J. Chem. Soc. p. 1872. (1934).

    Google Scholar 

  11. J. A. Cooper and W. E. Garner, Trans. Faraday Soc. 32: 1739 (1936).

    Article  CAS  Google Scholar 

  12. M. Avrami, J. Chem. Phys. 7: 1103 (1939);

    Article  CAS  Google Scholar 

  13. M. Avrami, J. Chem. Phys. 8: 212 (1940);

    Article  CAS  Google Scholar 

  14. M. Avrami, J. Chem. Phys. 9: 177 (1941).

    Article  CAS  Google Scholar 

  15. B. V. Erofeev, Compt. Rend. Acad. Sci. URSS 52: 511 (1946).

    CAS  Google Scholar 

  16. P. W. M. Jacobs and A. R. T. Kureishy, in: Proceedings of the Fourth International Symposium on the Reactivity of Solids, Elsevier, Amsterdam, 1961, p. 352.

    Google Scholar 

  17. D. A. Young, Nature 204: 281 (1964).

    Article  CAS  Google Scholar 

  18. J. G. N. Thomas and F. C. Tompkins, Proc. Roy. Soc. (London) Ser. A 210: 111 (1951).

    Article  CAS  Google Scholar 

  19. P. W. M. Jacobs and A. R. T. Kureishy, Trans. Faraday Soc. 58: 551 (1962).

    Article  CAS  Google Scholar 

  20. D. A. Dominey, H. Morley, and D. A. Young, Trans. Faraday Soc. 61: 1246 (1965).

    Article  CAS  Google Scholar 

  21. E. G. Prout and M. E. Brown, Nature 205: 1314 (1965).

    Article  CAS  Google Scholar 

  22. E. G. Prout and D. J. Moore, Nature 205: 1209 (1965).

    Article  CAS  Google Scholar 

  23. P. W. M. Jacobs, F. C. Tompkins, and V. R. Pai Verneker, J. Phys. Chem. 66: 1113 (1962).

    Article  CAS  Google Scholar 

  24. P. W. M. Jacobs and A. R. T. Kureishy, Can. J. Chem. 44: 703 (1966).

    Article  CAS  Google Scholar 

  25. P. W. M. Jacobs and A. R. T. Kureishy, J. Chem. Soc. p. 4718 (1964).

    Google Scholar 

  26. W. E. Garner and H. R. Hailes, Proc. Roy. Soc. (London) Ser. A 139: 576 (1933).

    Article  CAS  Google Scholar 

  27. E. G. Prout and F. C. Tomkins, Trans. Faraday Soc. 40: 488 (1944).

    Article  CAS  Google Scholar 

  28. R. M. Haynes and D. A. Young, Disc. Faraday Soc. 31: 229 (1961).

    Article  Google Scholar 

  29. R. S. Bradley, J. Colvin, and J. Hume, Proc. Roy. Soc. (London) Ser. A 137: 531 (1932).

    Article  CAS  Google Scholar 

  30. K. L. Mampel, Z. Physik. Chem. A187: 43, 235 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Jacobs, P.W.M. (1969). Kinetics of the Thermal Decomposition of Solids. In: Gray, T.J., Fréchette, V.D. (eds) Kinetics of Reactions in Ionic Systems. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6461-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6461-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6224-9

  • Online ISBN: 978-1-4899-6461-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics