Skip to main content

Nucleation and Kinetics of Ferroelectric Domains

  • Conference paper
Book cover Kinetics of Reactions in Ionic Systems

Part of the book series: Materials Science Research ((MSR))

  • 322 Accesses

Abstract

The relation between the reversal of ferroelectric domains and the change of phase by nucleation and growth of other systems is pointed out. The suggestion is made that the relative simplicity of the ferroelectric system together with the large number of observational techniques available make it suitable for testing nucleation theories. An outline is given of the current methods of observation and understanding of the nucleation and kinetics of domains in single crystals, with particular reference to the ionic materials; a discussion is then given of the relation of this to the technologically important ceramic materials, about which much less is understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. D. Megaw, Ferroelectricity in Crystals, Methuen, London, 1957.

    Google Scholar 

  2. W. Känzig, “Ferroelectrics and Antiferroelectrics,” in: Solid State Physics Vol. 4, Academic Press, New York, 1957.

    Google Scholar 

  3. F. Jona and G. Shirane, Ferroelectric Crystals Pergamon, New York and London, 1962.

    Google Scholar 

  4. W. J. Merz, Progress in Dielectrics Vol. 4, Heywood and Co., London, 1962.

    Google Scholar 

  5. E. Fatuzzo and W. J. Merz, Ferroelectricity, North Holland Pub. Co., Amsterdam, 1967.

    Google Scholar 

  6. J. J. Martin, Die Ferroelectricker, Akademische Verlags-gesellschaft, Leipzig, 1964.

    Google Scholar 

  7. J. A. Hooton and W. J. Merz, Phys. Rev. 78: 409 (1955).

    Article  Google Scholar 

  8. G. L. Pearson and W. L. Feldman, J. Phys. Chem. Solids 9: 28 (1959).

    Article  CAS  Google Scholar 

  9. M. Tanaka and G. Hanjo, J. Phys. Soc. Japan 19: 954 (1964).

    Article  CAS  Google Scholar 

  10. H. F. Kay, Acta. Cryst. 1: 229 (1948).

    Article  CAS  Google Scholar 

  11. C. B. Busquet, M. Lambert, A. M. Quittet, and A. Guinier, Acta. Cryst. 16: 989 (1963).

    Article  Google Scholar 

  12. N. Niizeki and M. Hasegawa, J. Phys. Soc. Japan 19: 550 (1964).

    Article  CAS  Google Scholar 

  13. A. G. Chynoweth, J. Appl. Phys. 27: 78 (1956).

    Article  CAS  Google Scholar 

  14. J. C. Burfoot and R. V. Latham, Brit. J. Appl. Phys. 14: 933 (1963).

    Article  Google Scholar 

  15. J. K. Sinha, J. Sci. Inst. 42: 696 (1965).

    Article  Google Scholar 

  16. G. Schmidt, Z. Phys. 145: 534 (1956).

    Article  CAS  Google Scholar 

  17. W. J. Merz, Phys. Rev. 95: 690 (1954).

    Article  CAS  Google Scholar 

  18. W. Kinase and H. Takahasi, J. Phys. Soc. Japan 12: 464 (1957).

    Article  CAS  Google Scholar 

  19. V. A. Zhirnov, Soviet Phys.-JETP 8: 822 (1959).

    Google Scholar 

  20. L. N. Bulaevski, Soviet Phys.-Solid State 5: 2329 (1964).

    Google Scholar 

  21. C. Kittel, Rev. Mod. Phys. 21: 541 (1949).

    Article  Google Scholar 

  22. H. F. Kay and J. W. Dunn, Phil. Mag. 7: 2027 (1962).

    Article  CAS  Google Scholar 

  23. J. Fousek and B. Brèzina, Czech. J. Phys. B117: 344 (1961).

    Article  Google Scholar 

  24. J. Fousek and B. Brèzina, J. Phys. Soc. Japan 19: 830 (1964).

    Article  CAS  Google Scholar 

  25. H. L. Stadler and P. J. Zachmanidis, J. Appl. Phys. 34: 3255 (1963).

    Article  CAS  Google Scholar 

  26. R. Landauer, J. Appl. Phys. 28: 227 (1957).

    Article  CAS  Google Scholar 

  27. S. Waku, J. Phys. Soc. Japan 17: 1068 (1962).

    Article  CAS  Google Scholar 

  28. K. Husimi and K. Kataoka, J. Appl. Phys. 29: 1247 (1958).

    Article  Google Scholar 

  29. K. Husimi and K. Kataoka, J. Appl. Phys. 30: 323 (1959).

    Article  Google Scholar 

  30. M. E. Drougard, H. L. Funk, and D. R. Young, J. Appl. Phys. 25: 1166 (1954).

    Article  CAS  Google Scholar 

  31. M. Prutton, Proc. Phys. Soc. 70: 702 (1957).

    Article  Google Scholar 

  32. K. Husimi, J. Appl. Phys. 30: 978 (1959).

    Article  Google Scholar 

  33. E. Fatuzzo, J. Appl. Phys. 32: 8 (1961).

    Article  Google Scholar 

  34. R. C. Miller and A. Savage, Phys. Rev. 112: 755 (1958).

    Article  CAS  Google Scholar 

  35. R. C. Miller and A. Savage, Phys. Rev. 115: 1176 (1959).

    Article  CAS  Google Scholar 

  36. R. C. Miller and A. Savage, J. Appl. Phys. 31: 662 (1960).

    Article  CAS  Google Scholar 

  37. C. F. Pulvari and W. Kuebler, J. Appl. Phys. 29: 1315 (1958).

    Article  CAS  Google Scholar 

  38. C. F. Pulvari and W. Kuebler, J. Appl. Phys. 29: 1742 (1958).

    Article  CAS  Google Scholar 

  39. H. H. Wieder, J. App. Phys. 31: 180 (1959).

    Article  Google Scholar 

  40. E. Fatuzzo, Phys. Rev. 127: 1999 (1962).

    Article  CAS  Google Scholar 

  41. E. Fatuzzo, Helv. Phys. Act. 33: 21 (1960).

    CAS  Google Scholar 

  42. D. S. Campbell, J. Electronics and Control 3: 330 (1957).

    Article  CAS  Google Scholar 

  43. H. H. Wieder, J. Appl. Phys. 28: 367 (1957).

    Article  CAS  Google Scholar 

  44. W. J. Merz, J. Appl. Phys. 27: 938 (1956).

    Article  CAS  Google Scholar 

  45. W. Känzig, Phys. Rev. 98: 549 (1955).

    Article  Google Scholar 

  46. A. G. Chynoweth, Phys. Rev. 102: 705 (1956).

    Article  CAS  Google Scholar 

  47. M. E. Drougard and R. Landauer, J. Appl. Phys. 30: 1663 (1959).

    Article  CAS  Google Scholar 

  48. V. Janovec, Czech. J. Phys. 8: 3 (1958).

    Article  Google Scholar 

  49. H. L. Allsop and D. F. Gibbs, Phil. Mag. 4: 359 (1959).

    Article  Google Scholar 

  50. M. Madden, Doctorate Thesis, University of Bristol (1959).

    Google Scholar 

  51. J. W. Dunn, “Domains in BaTiO3” Reports I, II. Contract Mos/7/GEN/1408/PR3 Min. of Aviation, 1958.

    Google Scholar 

  52. V. J. Tennery, and F. R. Anderson, J. Appl. Phys. 29: 755 (1958).

    Article  CAS  Google Scholar 

  53. B. Lewis, Proc. Phys. Soc. 73: 17 (1959).

    Article  CAS  Google Scholar 

  54. W. Heywang and R. Schöfer, Z. Angew. Phys. 8: 209 (1956).

    CAS  Google Scholar 

  55. T. F. Heuter and D. P. Neuhaus, J. Acoust. Soc. Am. 27: 292 (1955).

    Article  Google Scholar 

  56. W. P. Mason, Acustica 4: 200 (1954).

    Google Scholar 

  57. H. L. Allsop, Phil. Mag. 2: 1100 (1958).

    Article  Google Scholar 

  58. Z. Pajak and J. Stankowski, Proc. Phys. Soc. 71: 1144 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Kay, H.F. (1969). Nucleation and Kinetics of Ferroelectric Domains. In: Gray, T.J., Fréchette, V.D. (eds) Kinetics of Reactions in Ionic Systems. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6461-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6461-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6224-9

  • Online ISBN: 978-1-4899-6461-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics