Infrared Absorption Studies of Localized Vibrational Modes in Semiconductors

  • W. Hayes


There has been considerable general interest recently in the lattice dynamics of crystals containing defects. The most detailed experimental information concerning the dynamics of imperfect lattices has been obtained by infrared spectroscopic methods. The introduction of point defects into ionic crystals may activate two types of infrared vibrational absorption. (a) Localized mode absorption arising from the vibrations of light impurities. This type of absorption occurs outside the regions of band mode vibration and gives rise to sharp absorption lines. The amplitude of a localized vibrational mode is large near the defect and dies away rapidly with distance from the defect. (b) Resonant mode absorption which may be activated by all impurities. This type of absorption gives rise in general to broader peaks within the region of the band modes of the host crystal. The amplitude of resonance modes is enhanced near the defect but these modes may be transmitted through the lattice and closely resemble unperturbed lattice modes at large distances from the defect. For a recent review of work on local and resonance modes in ionic crystals see; for example, Maradudin.(1)


Local Mode Band Mode Defect Mode Localize Vibration Localize Vibrational Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Maradudin, Solid State Phys. 19, 1 (1966).Google Scholar
  2. 2.
    J.F. Angress, A.R. Goodwin, and S.D. Smith, Proc. Roy. Soc. A287, 64 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    W. Hayes, Phys. Rev. 138, A1227 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    W. Hayes and A. Spray, to be published.Google Scholar
  5. 5.
    R.J. Elliott, W. Hayes, G.D. Jones, H.F. Macdonald and C.T. Sennett, Proc. Roy. Soc. A289, 1 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    D.G. Thomas, J. Appl. Phys. 32, 2298 (1961).ADSCrossRefGoogle Scholar
  7. 7.
    W. Hayes and H.F. Macdonald, Proc. Roy. Soc. A297, 503 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    A. Mitsuishi, A. Manabe, H. Yoshinaga, S. Ibuki and H. Komiya, Proc. Internat. Conf, Phys. Semicond., Kyoto (1966), p. 72.Google Scholar
  9. 9.
    P.G. Dawber and R.J. Elliott, Proc. Roy. Soc. A273, 222 (1963).ADSCrossRefMATHGoogle Scholar
  10. 10.
    P.G. Dawber and R.J. Elliott, Proc. Phys. Soc. 81, 453 (1963).ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Newman and J.B. Willis, J. Phys. Chem. Solids 26, 373 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).ADSCrossRefMATHGoogle Scholar
  13. 13.
    D.W. Feldman, M. Ashkin and J.H. Parker, Jr., Phys. Rev. Lett. 17, 1209 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    W. Hayes, Phys. Rev. Lett. 13, 275 (1964).ADSCrossRefGoogle Scholar
  15. 15.
    A.R. Goodwin and S.D. Smith, Phys. Lett. 17, 203 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    S.D. Smith, R.E.V. Chaddock and A.R. Goodwin, Proc. Internat. Conf. Phys. Semicond., Kyoto (1966), p. 67.Google Scholar
  17. 17.
    O.G. Lorimor, W.G. Spitzer and M. Waldner, J. Appl. Phys. 37, 2509 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    W.G. Spitzer, J. Phys. Chem. Solids 28, 33 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    L. Bellomonte and M.H.L. Pryce, Proc. Phys. Soc. 89, 967 (1966).ADSCrossRefGoogle Scholar
  20. 20.
    L. Bellomonte and M.H.L. Pryce, Proc. Phys. Soc. 89, 973 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    O.G. Lorimor and W.G. Spitzer, J. Appl. Phys. 37, 3687 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    H. Reiss, C.S. Fuller and F.J. Morin, Bell System. Tech. J. 35, 535 (1956).CrossRefGoogle Scholar
  23. 23.
    R.J. Elliott and P. Pfeuty, J. Phys. Chem. Solids, to be published.Google Scholar
  24. 24.
    R.C. Newman and R.S. Smith, Phys. Lett. 24A, 671 (1967).CrossRefGoogle Scholar
  25. 25.
    E.M. Pell, J. Appl. Phys. 31, 1675 (1960)ADSCrossRefGoogle Scholar
  26. 26.
    W.G. Spitzer and M. Waldner, J. Appl. Phys. 36, 2450 (1965).ADSCrossRefGoogle Scholar
  27. 27.
    K.M. Chrenko, R.S. McDonald and E.M. Pell, Phys. Rev. 138, A1775 (1965).ADSCrossRefGoogle Scholar
  28. 28.
    M. Balkanski and W. Nazarewicz, J. Phys. Chem. Solids 27, 671 (1966).ADSCrossRefGoogle Scholar
  29. 29.
    W.G. Spitzer and M. Waldner, Phys. Rev. Lett. 14, 223 (1965).ADSCrossRefGoogle Scholar
  30. 30.
    M. Waldner, M.A. Hiller and W.G. Spitzer, Phys. Rev. 140, A172 (1965).ADSCrossRefGoogle Scholar
  31. 31.
    W. Kaiser, P.H. Peck and C.F. Lange, Phys. Rev. 101, 1264 (1956).ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Hrostowski and B.J. Alder, J. Chem. Phys. 33, 980 (1960).ADSCrossRefGoogle Scholar
  33. 33.
    B. Pajot, J. Phys. Chem. Solids 28, 73 (1966).ADSCrossRefGoogle Scholar
  34. 34.
    B.T.M. Willis, Acta Cryst. 18, 75 (1965).MathSciNetCrossRefGoogle Scholar
  35. 35.
    A.A. Maradudin, P.A. Flinn, Phys. Rev. 129, 2529 (1963).ADSCrossRefGoogle Scholar
  36. 36.
    B. Dawson, A. Hurley and V.W. Maslen, Proc. Roy. Soc. A298, 289 (1967).ADSCrossRefGoogle Scholar
  37. 37.
    B.T.M. Willis, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • W. Hayes
    • 1
  1. 1.Clarendon LaboratoryUniversity of OxfordUK

Personalised recommendations