Advertisement

The Lorenz Number of Single Crystals of Lead and Indium in Transverse Magnetic Fields

  • L. J. Challis
  • J. D. N. Cheeke
  • P. Wyder

Abstract

Since the theoretical work of Lifshitz1 and his school, and the experimental measurements of Alekseevskii and Gaidukov,1 the problem of the electrical magnetoresistance is solved in principle and there remains only the task of explaining the experimental results in terms of the topological structure of the Fermi surface. On the other hand, only a few measurements exist on the thermal magnetoresistance2 of metals and, apart from the investigations of Grüneisen and co-workers3 and de Nobel4 in the liquid-hydrogen range and of Alers5 and Wyder6 in the liquid-helium range, no simultaneous measurements exist of resistivity and thermal conductivity at high fields in very pure metals where the heat is carried almost entirely by the electrons. Furthermore, most of the work that has been done was carried out on polycrystalline material. There is, however, a certain interest in investigations of this kind.7 In this paper, we present preliminary results on the electrical and thermal magnetoresistance of a lead and an indium single crystal.

Keywords

Fermi Surface Angular Dependence Transverse Magnetic Field Lead Indium Soviet Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For detailed references see, for example, W. A. Harrison and M. B. Webb (eds.). The Fermi Surface, John Wiley & Sons, Inc., New York (1960), p. 100.Google Scholar
  2. 2.
    K. Mendelssohn and H. M. Rosenberg, Proc. Roy. Soc. (London) Ser. A 218, 190, 1953.ADSCrossRefGoogle Scholar
  3. 3.
    E. Grüneisen and H. Adenstedt, Ann. Physik 31, (5), 714, 1938.ADSCrossRefGoogle Scholar
  4. 4.
    J. de Nobel, Physica 15, 532, 1949.ADSCrossRefGoogle Scholar
  5. 5.
    P. B. Alers, Phys. Rev. 101, 41, 1956.ADSCrossRefGoogle Scholar
  6. 6.
    P. Wyder, Phys. Kondens. Materie, 3, 263, 1965.ADSGoogle Scholar
  7. 7.
    J. L. Olsen, Electron Transport in Metals, Interscience Publishers, Inc., New York (1962).Google Scholar
  8. 8.
    L. J. Challis, Cryogenics 2, 23, 1961.ADSCrossRefGoogle Scholar
  9. 9.
    P. Cotti, Helv. Phys. Acta 34, 8, 1961.Google Scholar
  10. 10.
    J. Thorn and P. Wyder (to be published).Google Scholar
  11. 11.
    N. E. Alekseevskii, Yu, P. Gaidukov, I. M. Lifshitz, and V. G. Peschanskii, Soviet Phys. JETP (English Transl.) 12, 837, 1961.Google Scholar
  12. 12.
    N. E. Alekseevskii and Yu. P. Gaidukov, Soviet Phys. JETP (English Transl.) 14, 256, 1962.Google Scholar
  13. 13.
    E. S. Borovik and V. G. Volotskaya, Soviet Phys. JETP (English Transl.) 11, 189, 1960.Google Scholar
  14. 14.
    A. B. Pippard, Low-Temperature Physics, Gordon & Breach Science Publishers, Inc., New York (1962).Google Scholar
  15. 15.
    A. H. Wilson, Theory of Metals, second edition, Cambridge University Press, Cambridge (1953).Google Scholar
  16. 16.
    M. Azbel’, M. I. Kaganov, and I. M. Lifshitz, Soviet Phys. JETP (English Transl.) 5, 967, 1957.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1965

Authors and Affiliations

  • L. J. Challis
    • 1
  • J. D. N. Cheeke
    • 1
  • P. Wyder
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamEngland

Personalised recommendations