Advertisement

The Effect of Spin-Phonon Interactions on the Thermal Conductivity of Chromium Doped MgO

  • L. J. Challis
  • D. J. Williams
Conference paper

Abstract

Recent measurements at low temperatures on dielectrics and semiconductors containing paramagnetic ions have shown that the thermal conductivity in zero field can be very much less than that expected assuming only mass-defect scattering.1–4 The conductivity has also been shown to be field-dependent5,7–11 and to decrease to a minimum value as the spins become tuned to the dominant phonon frequency.5,6,9,10

Keywords

Thermal Conductivity Phonon Scattering Transverse Field Zero Field Zero Field Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Rosenberg and B. Sujak, Phil. Mag. 5, 1299, 1960.ADSCrossRefGoogle Scholar
  2. 2.
    R. Orbach, Phil. Mag. 5, 1303, 1960.ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Slack, Phys. Rev. 126, 427, 1962.ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Slack, Phys. Rev. 133, A253, 1964.ADSCrossRefGoogle Scholar
  5. 5.
    I. P. Morton and H. M. Rosenberg, Phys. Rev. Letters 8, 200, 1962.ADSCrossRefGoogle Scholar
  6. 6.
    R. Orbach, Phys. Rev. Letters 8, 393, 1962.ADSCrossRefGoogle Scholar
  7. 7.
    B. Dreyfus, A. Lacaze, and F. Zadworny, Compt. Rend. 254, 3337, 1962.Google Scholar
  8. 8.
    B. Dreyfus and F. Zadworthy, J. Phys. Radium 23, 490, 1960.CrossRefGoogle Scholar
  9. 9.
    R. Berman, J. C. F. Brock, and D. J. Huntley, Phys. Letters 3, 310, 1963.ADSCrossRefGoogle Scholar
  10. 10.
    I. P. Morton, unpublished Ph. D. Thesis, Oxford University (1964).Google Scholar
  11. 11.
    M. G. Holland, Proceedings of the International Conference on Semiconductor Physics, Academic Press, Paris, 1964, p. 713.Google Scholar
  12. 12.
    F. G. Marshall, V. W. Rampton, and P. M. Rowell, private communication.Google Scholar
  13. 13.
    W. Low, Phys. Rev. 105, 801, 1957.ADSCrossRefGoogle Scholar
  14. 14.
    J. E. Wertz and P. Auzins, Phys. Rev. 106, 484, 1957.ADSCrossRefGoogle Scholar
  15. 15.
    J. E. Wertz, P. Auzins, J. H. E. Griffiths, and J. W. Orton, Discussions Faraday Soc. 26, 66, 1958.CrossRefGoogle Scholar
  16. 16.
    J. H. E. Griffiths and J. W. Orton, Proc. Phys. Soc. (London), Ser. A 73, 948, 1959.ADSCrossRefGoogle Scholar
  17. 17.
    J. E. Wertz, J. W. Orton, and P. Auzins, J. Appl. Phys. Suppl. 33, 322, 1962.ADSCrossRefGoogle Scholar
  18. 18.
    R. L. Hansler and W. G. Segelken, J. Phys. Chem. Solids 13, 124, 1960.ADSCrossRefGoogle Scholar
  19. 19.
    J. G. Castle and D. W. Feldman, Phys. Rev. 121, 1349, 1960.ADSCrossRefGoogle Scholar
  20. 20.
    S. A. Al’tshuler, B. I. Kochelaev, and A. M. Leushin, Soviet Phys.—Usp. (English Transl.) 4, 880, 1962.ADSCrossRefGoogle Scholar
  21. 21.
    R. H. Hoskins and B. H. Softer, Phys. Rev. 133, 490, 1964.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1965

Authors and Affiliations

  • L. J. Challis
    • 1
  • D. J. Williams
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamEngland

Personalised recommendations