Skip to main content

Phase Transitions

  • Conference paper
Low Temperature Physics LT9

Abstract

This paper is concerned with the theory of those phase transitions which can be satisfactorily dealt with in terms of simple self-consistent equations. The transition itself can be thought of as arising from nontrivial (usually symmetry breaking) solutions of self-consistent equations. Phenomena falling into this category and reviewed below are ferromagnetism and antiferromagnetism, gas-liquid condensation, freezing, and superconductivity. Presumably many other phenomena can be similarly accounted for—ferroelectricity, superlattice formation, unmixing of solutions, etc.—but time does not permit discussion of all of these. Crystal phase transitions are probably of a more delicate variety and most likely cannot be handled in the rather crude approximations which seem so successful in the first class. Finally, a most unfortunate omission is the λ-point transition of liquid helium. This transition is associated with the Bose-Einstein condensation of the ideal gas, modified of course, by the interatomic interactions. It is not a transition of the type which falls naturally into the class which we have chosen to discuss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Heller and G. B. Benedek, Phys. Rev. Letters 8, 428, 1962.

    Article  ADS  Google Scholar 

  2. M. Coopersmith and R. Brout, Phys. Rev. 130, 2539, 1963.

    Article  ADS  MATH  Google Scholar 

  3. R. Brout, Physica 29, 1041, 1963; R. Brout, S. Nettel, and H. Thomas, Phys. Rev. Letters (submitted).

    Article  Google Scholar 

  4. E. Stoner, Proc. Roy. Soc. (London) Ser. A 165, 372, 1938.

    Article  ADS  Google Scholar 

  5. J. Bardeen, L. Cooper, and J. R. Shrieffer, Phys. Rev. 108, 1175, 1957.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. P. W. Anderson, Phys. Rev. 112, 1900, 1958.

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793, 1914.

    Google Scholar 

  8. R. Brout, Phys. Rev. 118, 1009, 1960.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. F. Englert, Phys. Rev. Letters 5, 102, 1960.

    Article  ADS  Google Scholar 

  10. M. Fisher (to be published).

    Google Scholar 

  11. M. I. Bagatskii, A. V. Voronel, and B. G. Gusak, Zh. Eksperim. i Tear. Fiz. 43, 728, 1962. (Soviet Phys. JETP (English Transl.) 16, 517, 1963.)

    Google Scholar 

  12. A. W. Habgood and W. G. Schneider, Can. J. Chem. 32, 98, 1954.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. G. Daunt D. O. Edwards F. J. Milford M. Yaqub

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer Science+Business Media New York

About this paper

Cite this paper

Brout, R. (1965). Phase Transitions. In: Daunt, J.G., Edwards, D.O., Milford, F.J., Yaqub, M. (eds) Low Temperature Physics LT9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6443-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6443-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6217-1

  • Online ISBN: 978-1-4899-6443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics