Skip to main content

Abstract

The temperature dependence of the spontaneous magnetization of metallic nickel has been studied between 4.2° and 120°K by a pyromagnetic technique developed by the authors. Fractional changes in magnetization as small as a few parts per million could be detected near 4.2°K. The resultant data were fitted by the method of least squares to a theoretical equation containing terms descriptive of thermal excitation of spin waves in the presence of an effective magnetic field plus a T 2 term descriptive of collective electron behavior. The best fit of the data to this equation is obtained using the spin wave terms alone, provided an intrinsic energy gap is assumed in the spin wave dispersion law of 2.7°K for magnetization parallel to the [111] axis and 1.9°K parallel to the [100] axis. Enhancement of this gap by an externally applied field follows theoretical predictions. It is noted that the measured difference between the gap temperature along the two principal axes has the value theoretically predicted from previous measurements of magnetic anisotropy energy, however the isotropic contribution observed in this experiment has not been theoretically anticipated. A possible origin for the isotropic gap is proposed in terms of interaction of polarized s and d electrons. It is also pointed out, however, that the “isotropic effective field” may be a spurious result, originating in thermal expansion effects not included in the theoretical equation to which the data were fitted. Finally, a new type of pyromagnetic measurement is described which can be used to determine the temperature dependence of the magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Dyson, Phys. Rev. 102, 1217 and 1230 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. H. Charap, Phys. Rev. 119, 1538 (1960).

    Article  ADS  Google Scholar 

  3. C. Herring and C. Kittel, Phys. Rev. 31, 869 (1951).

    Article  ADS  Google Scholar 

  4. D. M. Edwards and E. P. Wohlfarth, J. phys. radium 20, 136 (1959).

    Article  Google Scholar 

  5. E. W. Pugh and B. E. Argyle, J. Appl. Phys. 32, 334S (1961).

    Article  ADS  Google Scholar 

  6. S. Foner and E. D. Thompson, J. Appl. Phys. 30, 229S (1959).

    Article  ADS  Google Scholar 

  7. R. L. Powell, M. D. Bunch, and R. J. Curruccini, Cryogenics 1, 139 (March, 1961).

    Article  ADS  Google Scholar 

  8. A. E. Ruark and M. F. Peters, J. Opt. Soc. Am. and Rev. Sci. Instr. 13, 205 (1961).

    Article  ADS  Google Scholar 

  9. Heat treated to remove any trace of temperature dependent magnetic properties in a manner previously described by E. W. Pugh, Rev. Sci. Instr. 29, 1118 (1958).

    Article  ADS  Google Scholar 

  10. P. P. Cioffi, Rev. Sci. Instr. 21, 624 (1950).

    Article  ADS  Google Scholar 

  11. T. Oguchi, Phys. Rev. 117, 117 (1960).

    Article  ADS  MATH  Google Scholar 

  12. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  ADS  MATH  Google Scholar 

  13. F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S (1961).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. E. Robinson, Phys. Rev. 83, 678 (1951).

    Article  ADS  MATH  Google Scholar 

  15. L. Patrick, Phys. Rev. 93, 384 (1954).

    Article  ADS  Google Scholar 

  16. F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).

    Article  ADS  Google Scholar 

  17. K. J. Standley and K. H. Reich, Proc. Phys. Soc. (London) 68B, 713 (1955).

    Article  ADS  Google Scholar 

  18. E. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938).

    Article  ADS  Google Scholar 

  19. E. P. Wohlfarth, Phil. Mag. 42, 374 (1951).

    MATH  Google Scholar 

  20. A similar least squares fitting to the spin wave equation has been used recently to analyze NMR results in CrBr3 by A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev. Letters 7, 122 (1961).

    Article  ADS  Google Scholar 

  21. M. Fallot, Ann. phys. 6, 305 (1936).

    Google Scholar 

  22. K 10=7.5×105 ergs/cc by H. J. Williams and R. M. Bozorth, Phys. Rev. 55, 673 (1939)

    Google Scholar 

  23. K 10 = 8.3×105 ergs/cc by K. H. Reich, Phys. Rev. 101, 1647 (1956).

    Article  ADS  Google Scholar 

  24. J. H. Van Vleck, J. phys. radium 20, 124 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. A. Osborn

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer Science+Business Media New York

About this paper

Cite this paper

Pugh, E.W., Argyle, B.E. (1962). Pyromagnetic Test of Spin Wave Theory in Metallic Nickel. In: Osborn, J.A. (eds) Proceedings of the Seventh Conference on Magnetism and Magnetic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6391-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6391-8_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6193-8

  • Online ISBN: 978-1-4899-6391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics