Skip to main content

Ion Transport in the Synaptosome and Na+-K+-ATPase

  • Chapter
Methods of Neurochemistry

Abstract

The availability of techniques for the preparation of synaptosomes from brain homogenates has made possible the morpho-biochemical and neuropharmacological investigation of this functionally important part of the neuron in vitro. Reports from several laboratories have shown that the synaptosomal cytoplasm can carry on a host of metabolic activities (for reviews see Refs. 15) which appear to be similar to those of the perikaryon of the neuron. The constituents of the synaptosome, which include the intraneuronal cytoplasm, mitochondria, and synaptic vesicles, are also separated from the outside environment by a permeability barrier with properties characteristic of a neuronal membrane. Recently there has been a crescendo of research on transport Na+-K+-ATPase in the synaptosome, the transport of ions across its limiting membrane, and the effect of various metabolic inhibitirs and pharmacological agents thereon (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. DeRobertis, Histophysiology of Synapses and Neurosecretion, Per-gamon, New York, 1964, p. 122.

    Google Scholar 

  2. E. DeRobertis, Ultrastructure and cytochemistry of the synaptic region, Science, 156, 907 (1967).

    CAS  Google Scholar 

  3. V. P. Whittaker, The application of subcellular fractionation techniques to the study of brain function, Progr. Biophys. Mol. Biol., 15, 39 (1965).

    CAS  Google Scholar 

  4. V. P. Whittaker, in Structure and Function of Nervous Tissue (G. H. Bourne, ed.), Vol. 3, Academic, New York, 1969, p. 1.

    Google Scholar 

  5. V. P. Whittaker and L. A. Barker, “The Subcellular Fractionation of Brain Tissue with Special Reference to the Preparation of Synaptosomes and Their Component Organelles,” Methods of Neurochemistry (R. Fried, ed.), Vol. 2, Dekker, New York, 1972, Chap. 1.

    Google Scholar 

  6. R. M. Marchbanks and V. P. Whittaker, in Biological Basis of Medicine (E. E. Bittar and N. Bittar, eds.), Vol. 5, Academic, New York, 1969, p. 39.

    Google Scholar 

  7. V. P. Whittaker, Membrane phenomena at the synapse, Neurosciences Res. Progr. Bull., 9, No. 3, 387 (1971).

    CAS  Google Scholar 

  8. J. C. Skou, The influence of some cations on an ATPase from peripheral nerves, Biochim. Biophys. Acta, 23, 394 (1957).

    CAS  PubMed  Google Scholar 

  9. M. Kurokawa, J. Sakamoto, and M. Kato, Distribution of Na+-K+-ATPase activity in isolated nerve-ending particles, Biochem. J., 97, 833 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. R. J. A. Hosie, The localization of ATPase in morphologically characterized subcellular fractions of guinea-pig brain, Biochem. J., 96, 404 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. R. W. Albers, R. Arnaiz, and E. DeRobertis, Na+-K+-ATPase and K+-activated p-nitrophenylphosphatase: A comparison of their subcellular localizations in rat brain, Proc. Natl. Acad. Sci. U.S.A., 53,557 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. H. F. Bradford, E. K. Brownlow, and D. B. Gammack, The distribution of cation-stimulated ATPase in subcellular fractions from bovine cerebral cortex, J. Neurochem., 13, 1283 (1966).

    CAS  PubMed  Google Scholar 

  13. A. A. Abdel-Latif, J. Brody, and H. Ramahi, Studies on Na+-K+-ATPase of the nerve endings and appearance of electrical activity in developing rat brain, J. Neurochem., 14, 1133 (1967).

    CAS  PubMed  Google Scholar 

  14. J. Clausen and B. Formby, Comparative studies of K+-p-nitrophenyl-phosphatase, K+-acylphosphatase and Na+-K+-ATPase in synaptosomes of rat brain, Hoppe-Seyler’s Z. Physiol. Chem., 349, 909 (1968).

    PubMed  Google Scholar 

  15. A. A. Abdel-Latif, J. P. Smith, and N. Hedrick, Adenosinetriphos-phatase and nucleotide metabolism in synaptosomes of rat brain, J. Neurochem., 17, 391 (1970).

    CAS  PubMed  Google Scholar 

  16. T. Ohashi, S. Uchida, J. Nagai, and H. Hoshida, Studies on phosphate hydrolyzing activities in the synaptic membrane, J. Biochem., 67, 635 (1970).

    CAS  Google Scholar 

  17. T. D. White and P. Keen, Effects of inhibitors of Na+-K+-ATPase on the uptake of norepinephrine by synaptosomes, Mol. Pharmacol., 7, 40 (1971).

    CAS  PubMed  Google Scholar 

  18. R. M. Marchbanks, The uptake of 14C-choline into synaptosomes in vitro, Biochem. J., 110, 533 (1968).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. L. T. Potter, “Uptake of Choline by Nerve Endings Isolated from the Rat Cerebral Cortex,” in Interaction of Drugs and Subcellular Components in Animal Cells (P. N. Campbell, ed.), Little, Brown, Boston, 1968, p. 293.

    Google Scholar 

  20. I. Diamond and E. P. Kennedy, Carrier-mediated transport of choline into synaptic nerve endings, J. Biol. Chem., 244, 3258 (1969).

    CAS  PubMed  Google Scholar 

  21. A. A. Abdel-Latif and J. P. Smith, Studies of choline transport and incorporation into lecithin of synaptosomes of delevoping rat brain, Brain Res., 31, 224 (1971).

    CAS  PubMed  Google Scholar 

  22. C-M. Ling and A. A. Abdel-Latif, Studies on sodium transport in rat brain nerve-ending particles, J. Neurochem., 15, 721 (1968).

    CAS  PubMed  Google Scholar 

  23. A. V. Escueta and S. H. Appel, Biochemical studies of synapses in vitro. II. Potassium transport, Biochemistry, 8, 725 (1969).

    CAS  PubMed  Google Scholar 

  24. P. Keen and T. D. White, The permeability of pinched-off nerve endings to Na+, K+ and Cl- and the effects of gramicidin, J. Neurochem., 18, 1097 (1971).

    CAS  PubMed  Google Scholar 

  25. D. A. Grahame-Smith and A. G. Parfitt, Tryptophan transport across the synaptosomal membrane, J. Neurochem., 17, 1339 (1970).

    CAS  PubMed  Google Scholar 

  26. R. W. Colburn, F. K. Goodwin, D. L. Murphy, W. E. Bunney, and J. M. Davis, Quantitative studies of norepinephrine uptake by synaptosomes, Biochem. Pharmacol., 17, 957 (1968).

    CAS  PubMed  Google Scholar 

  27. T. D. White and P. Keen, The Role of internal and external Na+ and K+ on the uptake of [3H] noradrenaline by synaptosomes prepared from rat brain, Biochim. Biophys. Acta, 196, 285 (1970).

    CAS  PubMed  Google Scholar 

  28. A. S. Horn, J. T. Coyle, and S. H. Snyder, Catecholamine uptake by synaptosomes from rat brain, Mol. Pharmacol., 7, 66 (1971).

    CAS  PubMed  Google Scholar 

  29. I. Diamond and A. L. Goldberg, Uptake and release of 45Ca by brain microsomes, synaptosomes and synaptic vesicles, J. Neurochem., 18, 1419 (1971).

    CAS  PubMed  Google Scholar 

  30. A. A. Abdel-Latif, A simple method for isolation of nerve-ending particles from rat brain, Biochim. Biophys. Acta, 121, 403 (1966).

    CAS  PubMed  Google Scholar 

  31. E. D. Day, P. N. McMillan, D. D. Mickey, and S. H. Appel, Zonal centrifuge profiles of rat brain homogenates: Instability in sucrose, stability is iso-osmotic Ficoll-sucrose, Anal. Biochem., 39, 29 (1971).

    CAS  PubMed  Google Scholar 

  32. M. K. Johnson and V. P. Whittaker, Lactate Dehydrogenase as a Cytoplasmic Marker in Brain, Biochem. J., 88, 404 (1963).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, The Separation of synaptic vesicles from nerve-ending particles (“Synaptosomes”), Biochem. J., 90, 293 (1964).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. A. A. Abdel-Latif, J. P. Smith, and E. P. Ellington, Subcellular distribution of Na+-K+-ATPase, ACh, and AChase in developing rat brain, Brain Res., 18, 441 (1970).

    CAS  PubMed  Google Scholar 

  35. E. DeRobertis, A. Delraldi, G. Arnaiz, and L. Salganicoff, Cholinergic and non-cholinergie nerve endings in rat brain-I, J. Neurochem., 9, 23 (1962).

    CAS  Google Scholar 

  36. G. Dallner, P. Siekevitz, and A. E. Palade, Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte, J. Cell Biol., 30, 97 (1966).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. A. A. Abdel-Latif and S. G. A. Alivisatos, Purification and properties of pyridine nucleosidase (Glycosidase) from bull semen, J. Biol. Chem., 237, 500 (1962).

    CAS  PubMed  Google Scholar 

  38. A. A. Abdel-Latif, M. Roberts, W. Karp, and J. P. Smith, Metabolism of phosphatidylcholine, phosphatidylinositol and palmitylcarnitine in synaptosomes from rat brain, J. Neurochem., 20, 189 (1973).

    CAS  PubMed  Google Scholar 

  39. D. Nachmansohn and I. B. Wilson, “Choline Acetylase,” in Methods in Enzymology, I (S. P. Colowick and N. O. Kaplan, (eds.), Academic, New York, 1955, p. 619.

    Google Scholar 

  40. P. D. Swanson, H. F. Bradford, and H. McIlwain, Stimulation and solubilization of Na+-aetivated ATPase of cerebral microsomes by surface-active agents, especially poloxyethylene ethers: Actions of phospholipases and a neuraminidase, Biochem. J., 92, 235 (1964).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. I. M. Glynn, C. W. Slayman, J. Eichberg, and R. M. C. Dawson, The ATPase system responsible for cation transport in electric organ, exclusion of phospholipids as intermediates, Biochem. J., 94, 692 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. J. S. Charnock, A. S. Rosenthal, and R. L. Post, Studies of the mechanism of cation transport. II. A phosphorylated intermediate in the cation stimulated enzymic hydrolysis of ATPase, Australian J. Exptl. Biol. Med. Sci., 41, 675 (1963).

    CAS  Google Scholar 

  43. R. L. Post, A. K. Sen, and A. S. Rosenthal, A phosphorylated intermediate in ATP-dependent Na+ and K+ transport across kidney membranes, J. Biol. Chem., 240, 1437 (1965).

    CAS  PubMed  Google Scholar 

  44. M. Pugita, T. Nakao, Y. Tashima, N. Mizuno, K. Nagano, and M. Nakao, K+-Stimulated p-nitrophenylphosphatase activity occurring in a highly specific ATPase preparation from rabbit brain, Biochim. Biophys. Acta., 117, 42 (1966).

    Google Scholar 

  45. J. D. Judah, J. Ahmad, and A. E. M. McLean, Ion transport and phosphorproteins of human red cells, Biochim. Biophys. Acta., 65, 472 (1962).

    CAS  PubMed  Google Scholar 

  46. Y. Israel and E. Titus, A comparison of microsomal (Na+-K+)-ATPase with K+-acetylphosphatase, Biochim. Biophys. Acta., 139, 450 (1967).

    CAS  PubMed  Google Scholar 

  47. R. Tanaka and T. Mtsumata, p-Nitrophenyl phosphatases of a membrane fraction from bovine cerebral cortex, J. Neurochem., 16, 1163 (1969).

    CAS  PubMed  Google Scholar 

  48. B. Formby and J. Clausen, Phosphatase activity in particulate fractions of rat brain, Hoppe-Seyler’s Z. Physiol. Chem., 349, 349 (1968).

    CAS  PubMed  Google Scholar 

  49. L. E. Hokin, P. S. Sastry, P. R. Galsworthy, and A. Yoda, Evidence that a phosphorylated intermediate in a brain transport ATPase is an acyl phosphate, Proc. Natl. Acad. Sci. U.S.A., 54, 177 (1965).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. A. L. Hodgkin and R. D. Keynes, Active transport of cations in giant axons from sepia and loligo, J. Physiol (London), 128, 28 (1955).

    CAS  Google Scholar 

  51. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193, 265 (1951).

    CAS  PubMed  Google Scholar 

  52. A. Gomori, A modification of the colorimetric phosphorus determination for use with the photoelectric colorimeter, J. Lab. Clin. Med., 27, 955 (1942).

    CAS  Google Scholar 

  53. C. H. Fiske and Y. Subbarow, Colorimetric determination of phosphorus, J. Biol. Chem., 66, 375 (1925).

    CAS  Google Scholar 

  54. S. L. Bonting, “Na+-K+-activated ATPase and Cation Transport,” in Membranes and Ion Transport (E. D. Bittar, ed.), Vol. 1, Wiley-Interscience, New York, 1970, p. 257.

    Google Scholar 

  55. A. A. Abdel-Latif, J. P. Smith, and C. A. Dasher, Rapid appearance of labeled lecithin and protein in isolated nerve endings from rat brain, Proc. Soc. Exptl. Biol. Med., 134, 850 (1970).

    CAS  Google Scholar 

  56. V. H. Ebel, J. R. Wolff, F. Dorn, and T. H. Günther, Wikung von Hormonen auf Elektrolytgehalt, ATPase and Endoplasmatisches Retikulum in Rattenhirn, Z. Klin. Chem. Klin. Biochem., 9, 249 (1971).

    CAS  PubMed  Google Scholar 

  57. A. Atkinson, A. D. Gatenby, and A. G. Lowe, Subunit structure of the Na+, K+-dependent transport ATPase, Nature, 233, 145 (1971).

    CAS  Google Scholar 

  58. H. Matsui and A. Schwartz, Purification and properties of a highly active ouabain-sensitive Na+, K+-dependent ATPase from cardiac tissue, Biochim. Biophys. Acta, 128, 380 (1966).

    CAS  PubMed  Google Scholar 

  59. A. Kahlenberg, N. C. Dulak, J. F. Dixon, P. R. Galsworthy, and L. E. Hokin, Studies on the characterization of the Na+-K+-ATPase V. Partial purification of the lubrol-solubilized beef brain enzyme, Arch. Biochem. Biophys., 131, 253 (1969).

    CAS  PubMed  Google Scholar 

  60. R. F. Squires, On the interactions of Na+, K+, Mg++ and ATP with the Na+-K+-ATPase from rat brain, Biochem. Biophys. Res. Commun., 19, 27 (1965).

    CAS  Google Scholar 

  61. O. Jardetzky, Simple allosteric model for membrane pumps, Nature, 211, 969 (1966).

    CAS  PubMed  Google Scholar 

  62. J. D. Robinson, Kinetic studies on a brain microsomal ATPase. evidence suggesting conformational changes, Biochemistry, 6, 3250 (1967).

    CAS  PubMed  Google Scholar 

  63. R. Tanaka and L. G. Abood, Phospholipid requirement of Na+, Inactivated ATPase from rat brain, Arch. Biochem. Biophys., 108, 47 (1964).

    CAS  PubMed  Google Scholar 

  64. R. Tanaka and K. P. Strickland, Role of phospholipid in the activation of Na+-K+-ATPase of beef brain, Arch. Biochem. Biophys., 111, 583 (1965).

    CAS  PubMed  Google Scholar 

  65. M. Germain and P. Proulx, ATPase activity in synaptic vesicles of rat brain, Biochem. Pharmacol., 14, 1815 (1965).

    CAS  PubMed  Google Scholar 

  66. L. G. Abood, E. Brunngraber, and M. Taylor, Glycolytic and oxidative phosphorylative studies with intact and disrupted rat brain mitochondria, J. Biol. Chem., 234, 1307 (1959).

    CAS  PubMed  Google Scholar 

  67. V. P. Whittaker, The isolation and characterization of acetylcholine containing particles from brain, Biochem. J., 72, 694 (1959).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. R. Tanaka and L. G. Abood, Isolation from rat brain of mitochondria devoid of glycolytic activity, J. Neurochem., 10, 571 (1963).

    CAS  PubMed  Google Scholar 

  69. E. G. Brunngraber, J. Aguilar, and W. G. Occomy, The intracellular distribution of glycolytic and tricarboxylic acid cycle enzymes in rat brain mitochondrial preparations, J. Neurochem., 10, 433 (1963).

    CAS  PubMed  Google Scholar 

  70. A. A. Abdel-Latif and L. G. Abood, Biochemical studies on mitochondria and other cytoplasmic fractions of developing rat brain, J. Neurochem., 11, 9 (1964).

    CAS  PubMed  Google Scholar 

  71. S. H. Appel and B. L. Parrot, Hexose monophosphate pathway in synapses, J. Neurochem., 17, 1619 (1970).

    CAS  PubMed  Google Scholar 

  72. D. J. K. Balfour and J. C. Gilbert, Studies of the respiration of synaptosomes, Biochem. Pharmacol., 20, 1151 (1971).

    CAS  PubMed  Google Scholar 

  73. H. F. Bradford and A. J. Thomas, Metabolism of glucose and glutamate by synaptosomes from mammalian cerebral cortex, J. Neurochem., 16, 1495 (1969).

    CAS  PubMed  Google Scholar 

  74. A. A. Abdel-Latif and L. G. Abood, Incorporation of 32P into the subcellular fractions of the developing rat brain, J. Neurochem., 12, 157 (1965).

    CAS  PubMed  Google Scholar 

  75. A. A. Abdel-Latif, Acetylcholine and the incorporation of 32P into phospholipids and phosphoproteins of nerve endings of developing rat brain, Nature (London), 211, 530 (1966).

    CAS  Google Scholar 

  76. J. Durell and M. A. Sodd, Studies on the acetylcholine-stimulated incorporation of 32P into the phospholipid of brain particulate preparations. II, J. Neurochem., 13, 487 (1966).

    CAS  PubMed  Google Scholar 

  77. A. A. Abdel-Latif and J. P. Smith, In vitro incorporation of 14C-choline into phosphatidylcholine of rat brain synaptosomes and the effect of calcium ions, Biochem. Pharmacol., 21, 436 (1972).

    CAS  PubMed  Google Scholar 

  78. I. G. Morgan and L. Austin, Synaptosomal protein synthesis in a cell-free system, J. Neurochem., 15, 41 (1968).

    CAS  PubMed  Google Scholar 

  79. L. A. Autilio, S. H. Appel, P. Pettis, and P. Gambetti, Biochemical studies of synapses in vitro, Biochemistry, 7, 2615 (1968).

    CAS  PubMed  Google Scholar 

  80. H. F. Bradford, Metabolic response of synaptosomes to electrical stimulation: Release of amino acids, Brain Res., 19, 239 (1970).

    CAS  PubMed  Google Scholar 

  81. E. G. Gray and V. P. Whittaker, The isolation of nerve endings from brain: An electron-microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. (London), 96, 79 (1962).

    CAS  Google Scholar 

  82. R. M. Marchbanks, The osmotically sensitive K+ and Na+ compartments of synaptosomes, Biochem. J., 104, 148 (1967).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. A. A. Abdel-Latif, M. Yamaguchi, J. Smith, and T. Yamaguchi, Studies on the effect of ouabain on sodium and phosphate uptake into nerve endings of developing rat brain, Life Sci., 7, 1325 (1968).

    CAS  Google Scholar 

  84. A. A. Abdel-Latif and J. P. Smith, Studies on choline transport and metabolism in rat brain synaptosomes, Federation Proc., 31 (1972).

    Google Scholar 

  85. L. T. Potter, Uptake of propranolol by isolated guinea-pig atria, J. Pharmacol. Exptl. Therap., 155, 91 (1967).

    CAS  Google Scholar 

  86. P. Keen and T. D. White, A light-scattering technique for the study of permeability of rat brain synaptosomes in vitro, J. Neurochem., 17, 565 (1970).

    CAS  PubMed  Google Scholar 

  87. A. L. Koch, Some calculations on the turbidity of mitochondria and bacteria, Biochim. Biophys. Acta, 51, 429 (1961).

    CAS  PubMed  Google Scholar 

  88. P. G. LeFevre and M. E. LeFerve, The mechanism of glucose transfer into and out of the human red cell, J. Gen. Physiol., 35, 891 (1952).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. H. Tedeschi and D. L. Harris, The osmotic behavior and permeability to non-electrolyte s of mitochondria, Arch. Biochem. Biophys., 58, 52 (1955).

    CAS  PubMed  Google Scholar 

  90. P. Keen, personal communication.

    Google Scholar 

  91. R. M. Marchbanks, Compartmentation of acetylcholine in synaptosomes, Biochem. Pharmacol., 16, 921 (1967).

    CAS  PubMed  Google Scholar 

  92. J. R. Cooper, F. E. Bloom, and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University, New York, 1970.

    Google Scholar 

  93. R. W. Ryall, The subcellular distribution of acetylcholine, substance P, 5-hydroxytryptamine, γ-aminobutyric acid and glutamic acid in brain homogenates, J. Neurochem., 11, 131 (1964).

    CAS  PubMed  Google Scholar 

  94. H. F. Bradford, Respiration in vitro of synaptosomes from mammalian cerebral cortex, J. Neurochem., 115, 675 (1969).

    Google Scholar 

  95. C-P. Sung and R. M. Johnstone, Evidence for active transport of choline in rat kidney cortex slices, Can. J. Biochem., 43, 1111 (1965).

    CAS  PubMed  Google Scholar 

  96. A. L. Hodgkin and K. Martin, Choline uptake by giant axons of loligo, J. Physiol. (London), 179, 26 P (1967).

    Google Scholar 

  97. J. Schuberth, A. Sundwall, B. Sorbo, and J-O Lindell, Uptake of choline by mouse brain slices, J. Neurochem., 13, 347 (1966).

    CAS  Google Scholar 

  98. J. Schuberth, A. Sundwall, and B. Sorbo, Relation between Na+-K+ transport and the uptake of choline by brain slices, Life Sci., 6, 293 (1967).

    CAS  PubMed  Google Scholar 

  99. W. J. Cooke and J. D. Robinson, Factors influencing choline movements in rat brain slices, Biochem. Pharmacol., 20, 2355 (1971).

    CAS  PubMed  Google Scholar 

  100. A. Askari, Uptake of some quaternary ammonium ions by human erythrocytes, J. Gen. Physiol., 49, 1147 (1966).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. J. Martin, Concentrative accumulation of choline by human erythrocytes, J. Gen. Physiol., 51, 497 (1968).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. A. A. Abdel-Latif and J. P. Smith, Studies on choline transport and metabolism in rat brain synaptosomes, Biochem. Pharmacol., 21, 3005 (1972).

    CAS  PubMed  Google Scholar 

  103. B. C. Pressman, E. J. Harris, W. S. Jagger, and J. H. Johnson, Antibiotic-mediated transport of alkali ions across lipids barriers, Proc. Nat. Acad. Sci. U.S.A., 58, 1949 (1967).

    CAS  Google Scholar 

  104. Y. Itokawa and J. R. Cooper, Ion movements and thiamine, II. The release of the vitamin from membrane fragments, Biochim. Biophys. Acta, 196, 274 (1970).

    CAS  PubMed  Google Scholar 

  105. A. Lehninger, Biochemistry, Worth, New York, 1970, p. 605.

    Google Scholar 

  106. R. Whittam and K. P. Wheeler, Transport across cell membranes, Ann. Rev. Physiol., 32, 21 (1970).

    CAS  Google Scholar 

  107. D. F. Bogdanski, A. Tissari, and B. B. Brodie, Role of Na+, K+, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes, Life Sci., 7, 419 (1968).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdel-Latif, A.A. (1973). Ion Transport in the Synaptosome and Na+-K+-ATPase. In: Fried, R. (eds) Methods of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6375-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6375-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6186-0

  • Online ISBN: 978-1-4899-6375-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics