Skip to main content

Antibiotic Resistance

Microbial Adaptation and Evolution

  • Chapter
Book cover The Antibiotic Paradox

Abstract

Today most bacteria that were previously universally susceptible to antibiotics are resistant to at least some antibiotics and, in some cases, to many different ones. We must face this unsettling situation now, only 100 years since the recognition that bacteria cause disease and only 50 years since the discovery of antibiotics. When antibiotics came into being, they were a godsend. Natural substances made by one microorganism could inhibit growth and kill another. Scientists learned to produce, harvest, and purify these substances for treatment of diseases caused by microorganisms. The dramatic effect of antibiotics in treating previously fatal diseases led to enormous expectations. Even minor symptoms, once left to our own body defenses, were given over to drug therapy, in many cases to these new “miracle” agents. But there was an unexpected consequence to this reliance on antibiotics. Bacteria developed ways to resist them. With increased and prolonged use came selection of bacteria that were no longer killed by the antibiotic. These strains propagated and took their places in the environment, coming back to cause infections that were not cured by these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References Cited

  • Chow, J. W., Fine, M. J., and Shlaes, D. M. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Int. Med. 115:585–590, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Croft, B. A. Arthropod resistance to insecticides: a key to pest control failures and successes in North American apple orchards. Ent. Exp. Appl. 31:88–110, 1982.

    Article  Google Scholar 

  • Datta, N., Faiers, M. C., Reeves, D. S. et al. R factors in Escherichia coli in faeces after oral chemotherapy in general practice. The Lancet ii: 312–315, 1971.

    Article  Google Scholar 

  • Davis, C. D. and Anandan, J. The evolution of R factor: a study of a “preantibiotic” community in Borneo. N. Engl. J. Med. 282:117–122, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Deuchars, K. L. and Ling, V. P-glycoprotein and multidrug resistance in cancer chemotherapy. Sem. Oncology 16:156–165, 1989.

    CAS  Google Scholar 

  • Gardner, P., Smith, D. H., Beer, H., and Moellering, R. C., Jr. Recovery of resistance (R) factors from a drug-free community. The Lancet, pp. 774–776, October 11, 1969.

    Google Scholar 

  • George, A. M. and Levy, S. B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: identification of a non-plasmid mediated efflux system for tetracycline. J. Bacteriol. 155:531–540, 1983.

    PubMed  CAS  Google Scholar 

  • Hughes, V. M. and Datta, N. Conjugative plasmids in bacteria of the “preantibiotic” era. Nature 302:725–726, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kloos, W. E. Effect of single antibiotic therapy on Staphylococcus community structure. APUA Newsletter 5:4:1–2, 1987.

    Google Scholar 

  • Krogstad, D. J., Schlesinger, P. H., and Herwaldt, B. L. Antimalarial agents: mechanisms of chloroquine resistance. Antimicrob. Agents Chemother. 32:799–801, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. B. Microbial resistance to antibiotics: an evolving and persistent problem. The Lancet i:83–88, 1982.

    Article  Google Scholar 

  • Levy, S. B. Evolution and spread of tetracycline resistance determinants. J. Antimicrob. Chemother. 24:1–3, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. B. and Miller, R. V. Eds. Gene Transfer in the Environment. McGraw-Hill Publishing Co., New York, 1989.

    Google Scholar 

  • Levy, S. B., Marshall, B., Schluederberg, S. et al. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 32: 1801–1806, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mare, I. J. Incidence R factors among gram-negative bacteria in drug-free human and animal communities. Nature (London) 220:1046–1047, 1968.

    Article  CAS  Google Scholar 

  • Mare, I. J. and Coetzee, J. N. The incidence of transmissible drug resistance factors among strains of Escherichia coli in the Pretoria area. S.A. Med. J., pp. 980–981, November 5, 1966.

    Google Scholar 

  • Moller, J. K., Bak, A. L., Stenderup, A., Zachariae, H., and Afzelius, H. Changing patterns of plasmid-mediated resistance during tetracycline therapy. Antimicrob. Agents Chemother. 11:388–391, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Murray, B. E., Renismer, E. R., and DuPont, H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim-sulfamethoxazole. N. Engl. J. Med.306:130–135, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Novick, R. P. Penicillinase plasmids of Staphylococcus aureus. Fed. Proc. 27:29–38, 1967.

    Google Scholar 

  • O’Brien, T. F., del Pilar Pla, M., Mayer, K. H., et al. Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science230:87–88, 1985.

    Article  PubMed  Google Scholar 

  • Roberts, M. C. Gene transfer in the urogenital and respiratory tract. In: Gene Transfer in the Environment, pp. 347–376. (Levy S. B. and Miller, R. V. Eds.), McGraw-Hill, New York, 1989.

    Google Scholar 

  • Rolland, R. M., Hausfater, G., Marshall, B., and Levy, S. B. Antibiotic-resistant bacteria in wild primates: Increased prevalence in baboons feeding on human refuse. Appl. Env. Microbiol. 49:791–794, 1985.

    CAS  Google Scholar 

  • Sanders, C. C. New β-lactams: new problems for the internist. Ann. Int. Med. 115:650–651, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. H. Salmonella with transferable drug resistance. N. Engl. J. Med.275:625–630, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Sugarman, B. and Besanti, E. Treatment failures secondary to in vivo development of drug resistance by microorganisms. Rev. Infect. Dis. 2:153–167, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Tauxe, R. V., Cavanagh, T. R. and Cohen, M. L. Interspecies gene transfer in vivo producing an outbreak of multiply resistant Shigellosis. J. Infect. Dis.160:1067–1070, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Zscheck, K. K., Hull, R., and Murray, B. E. Restriction mapping and hybridization studies of a α-lactamase-encoding fragment from Streptococcus (Enterococcus) faecalis. Antimicrob. Agents Chemother. 32:768–769, 1988.

    Article  PubMed  CAS  Google Scholar 

Bibliography Chapter 4

  • Chow, J. W., Fine, M. J., and Shlaes, D. M. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Int. Med. 115:585–590, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Croft, B. A. Arthropod resistance to insecticides: a key to pest control failures and successes in North American apple orchards. Ent. Exp. Appl. 31:88–110, 1982.

    Article  Google Scholar 

  • Datta, N., Faiers, M. C., Reeves, D. S. et al. R factors in Escherichia coli in faeces after oral chemotherapy in general practice. The Lancet ii: 312–315, 1971.

    Article  Google Scholar 

  • Davis, C. D. and Anandan, J. The evolution of R factor: a study of a “preantibiotic” community in Borneo. N. Engl. J. Med. 282:117–122, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Deuchars, K. L. and Ling, V. P-glycoprotein and multidrug resistance in cancer chemotherapy. Sem. Oncology 16:156–165, 1989.

    CAS  Google Scholar 

  • Gardner, P., Smith, D. H., Beer, H., and Moellering, R. C., Jr. Recovery of resistance (R) factors from a drug-free community. The Lancet, pp. 774–776, October 11, 1969.

    Google Scholar 

  • George, A. M. and Levy, S. B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: identification of a non-plasmid mediated efflux system for tetracycline. J. Bacteriol. 155:531–540, 1983.

    PubMed  CAS  Google Scholar 

  • Hughes, V. M. and Datta, N. Conjugative plasmids in bacteria of the “preantibiotic” era. Nature 302:725–726, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kloos, W. E. Effect of single antibiotic therapy on Staphylococcus community structure. APUA Newsletter 5:4:1–2, 1987.

    Google Scholar 

  • Krogstad, D. J., Schlesinger, P. H., and Herwaldt, B. L. Antimalarial agents: mechanisms of chloroquine resistance. Antimicrob. Agents Chemother. 32:799–801, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. B. Microbial resistance to antibiotics: an evolving and persistent problem. The Lancet i:83–88, 1982.

    Article  Google Scholar 

  • Levy, S. B. Evolution and spread of tetracycline resistance determinants. J. Antimicrob. Chemother. 24:1–3, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. B. and Miller, R. V. Eds. Gene Transfer in the Environment. McGraw-Hill Publishing Co., New York, 1989.

    Google Scholar 

  • Levy, S. B., Marshall, B., Schluederberg, S. et al. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 32: 1801–1806, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mare, I. J. Incidence R factors among gram-negative bacteria in drug-free human and animal communities. Nature (London) 220:1046–1047, 1968.

    Article  CAS  Google Scholar 

  • Mare, I. J. and Coetzee, J. N. The incidence of transmissible drug resistance factors among strains of Escherichia coli in the Pretoria area. S.A. Med. J., pp. 980–981, November 5, 1966.

    Google Scholar 

  • Moller, J. K., Bak, A. L., Stenderup, A., Zachariae, H., and Afzelius, H. Changing patterns of plasmid-mediated resistance during tetracycline therapy. Antimicrob. Agents Chemother. 11:388–391, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Murray, B. E., Renismer, E. R., and DuPont, H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim-sulfamethoxazole. N. Engl. J. Med.306:130–135, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Novick, R. P. Penicillinase plasmids of Staphylococcus aureus. Fed. Proc. 27:29–38, 1967.

    Google Scholar 

  • O’Brien, T. F., del Pilar Pla, M., Mayer, K. H., et al. Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science230:87–88, 1985.

    Article  PubMed  Google Scholar 

  • Roberts, M. C. Gene transfer in the urogenital and respiratory tract. In: Gene Transfer in the Environment, pp. 347–376. (Levy S. B. and Miller, R. V. Eds.), McGraw-Hill, New York, 1989.

    Google Scholar 

  • Rolland, R. M., Hausfater, G., Marshall, B., and Levy, S. B. Antibiotic-resistant bacteria in wild primates: Increased prevalence in baboons feeding on human refuse. Appl. Env. Microbiol. 49:791–794, 1985.

    CAS  Google Scholar 

  • Sanders, C. C. New β-lactams: new problems for the internist. Ann. Int. Med. 115:650–651, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. H. Salmonella with transferable drug resistance. N. Engl. J. Med.275:625–630, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Sugarman, B. and Besanti, E. Treatment failures secondary to in vivo development of drug resistance by microorganisms. Rev. Infect. Dis. 2:153–167, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Tauxe, R. V., Cavanagh, T. R. and Cohen, M. L. Interspecies gene transfer in vivo producing an outbreak of multiply resistant Shigellosis. J. Infect. Dis.160:1067–1070, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Zscheck, K. K., Hull, R., and Murray, B. E. Restriction mapping and hybridization studies of a α-lactamase-encoding fragment from Streptococcus (Enterococcus) faecalis. Antimicrob. Agents Chemother. 32:768–769, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Stuart B. Levy

About this chapter

Cite this chapter

Levy, S.B. (1992). Antibiotic Resistance. In: The Antibiotic Paradox. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6042-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6042-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44331-2

  • Online ISBN: 978-1-4899-6042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics