Skip to main content
  • 51 Accesses

Abstract

Multi-anvil devices are extensions in three dimensions of Bridgman’s opposed anvils. The latter are not strictly two-dimensional but since the samples are compressed into extremely thin wafers this approximate generalization may be made. By adapting the principle of massive support to apparatus with four or more anvils it has been possible to apply pressures up to 100 kb to sample volumes of several cubic centimetres and upwards. The first person to successfully build such an apparatus was H. T. Hall at Brigham Young University, Utah, who used four anvils with triangular faces to generate pressure in a solid tetrahedron1. Obviously other configurations are possible but since the degree of complexity rises rapidly with the number of anvils the only other one to have been developed to any extent is a cubic device with six square-faced anvils2,3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall, H. T. Rev. Sci. Instrum. 1958, 29, 267.

    Article  ADS  Google Scholar 

  2. Houck, J. C. and Hutton, U. O. High Pressure Measurement, p. 221. Eds. A. A. Giardini and E. G. Lloyd. Butterworths, London, 1963.

    Google Scholar 

  3. Vereshchagin, L. F. Progress in Very High Pressure Research. Eds. F. P. Bundy, W. R. Hibbard and H. M. Strong. Wiley, New York, 1960.

    Google Scholar 

  4. Lees, J. Advances in High Pressure Research, vol. 1, p. 1, Ed. R. S. Bradley. Academic Press, New York, 1966.

    Google Scholar 

  5. Lloyd, E. C., Hutton, U. O. and Johnson, D. P. J. Res. Nat. Bur. Stand. 1959, 63c, 59.

    Google Scholar 

  6. Lees, J. Nature, Lond. 1964, 203, 965.

    Article  ADS  Google Scholar 

  7. King, J. H. J. Sci. Instrum. 1964, 41, 102.

    Article  ADS  Google Scholar 

  8. King, J. H. J. Sci. Instrum. 1965, 42, 374.

    Article  ADS  Google Scholar 

  9. Lees, J. and Williamson, B. J. H. Nature, Lond. 1965, 208, 278.

    Article  ADS  Google Scholar 

  10. Jayaraman, A., Klement, W., Newton, R. G. and Kennedy, G. G. J. Phys. Chem. Solids, 1963, 24, 7.

    Article  ADS  Google Scholar 

  11. Butozov, V. P. Sov. Phys. Crystallogr. 1957, 2, 533.

    Google Scholar 

  12. Pugh, H. Ll. D. and Lees, J. Nature, Lond. 1961, 191, 865.

    Article  ADS  Google Scholar 

  13. Butcher, E. G., Alsop, M. Weston, J. A. and Gebbie, H. A. Nature, Lond. 1963, 199, 756.

    Article  ADS  Google Scholar 

  14. Claussen, W. F. Rev. Sci. Instrum. 1960, 31, 878.

    Article  ADS  Google Scholar 

  15. Blum, F. A. and Deaton, B. C. Phys. Rev. Letters, 1964, 12, 697.

    Article  ADS  Google Scholar 

  16. Hall, H. T. Rev. Sci. Instrum. 1962, 33, 1278.

    Article  ADS  Google Scholar 

  17. Zeitlin, A. Scientific American, 1965, 212 (5), 38.

    Article  ADS  Google Scholar 

  18. Barnett, J. D., and Hall H. T. Rev. Sci. Instrum. 1964, 35, (2), 175.

    Article  ADS  Google Scholar 

  19. Jeffery, R. N., Barnett, J. D., Vanfleet, H. B. and Hall, H. T. J. appl. Phys. 1966, 37, 3172.

    Article  ADS  Google Scholar 

  20. Decker, D. L. J. appl. Phys. 1965, 36, 157.

    Article  ADS  Google Scholar 

  21. Owen, N. B. J. Sci. Instrum. 1966, 43, 765.

    Article  ADS  Google Scholar 

  22. Boyd, F. R. and England, J. L. J. Geophys. Res. 1960, 65, 741.

    Article  ADS  Google Scholar 

  23. Bradley, C. C. and Gebbie, H. A. Phys. Letters, 1965, 16, 109.

    Article  ADS  Google Scholar 

  24. Bradley, C. C., Gebbie, H. A., Gilby, A. C., Kechin, V. V. and King, J. H. Nature, Lond. 1966, 211, 839.

    Article  ADS  Google Scholar 

  25. Gebbie, H. A. Advances in Quantum Electronics. Ed. J. R. Singer. Columbia University Press, New York, 1961.

    Google Scholar 

  26. Zeitlin, A. A.S.M.E. 60-WA-333, 1961.

    Google Scholar 

  27. Vereshchagin, L. F. Progress in Very High Pressure Research, p. 290. Eds. F. P. Bundy, W. R. Hibberd and H. M. Strong. Wiley, New York, 1961.

    Google Scholar 

  28. Bundy, F. P. Modern Very High Pressure Techniques, p. 9. Ed. R. H. Wentorf. Butterworths, London, 1962.

    Google Scholar 

  29. Osugi, J., Shimizu, K., Inoue, K. and Yasunami, Rev. Phys. Chem. Japan, 1964, 34, (1), 1.

    Google Scholar 

  30. Witteman, W. J. and Werkman, T. Philips Res. Reports, 1963, 18, 447.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bradley, C.C. (1969). Multi-Anvil Devices. In: High Pressure Methods in Solid State Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5877-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5877-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5879-2

  • Online ISBN: 978-1-4899-5877-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics