Point Defects and Dislocations in Silver Chloride

  • M. N. Kabler
  • H. Layer
  • M. G. Miller
  • L. Slifkin
Part of the Materials Science Research book series (MSR)


Three experiments on imperfections in silver chloride crystals are reviewed. (a) Studies of the strain aging in impure crystals as a function of time, temperature, and purity establish that the dislocations are pinned by divalent impurities which migrate with an activation energy of 0.46 eV. (b) Observations of ionic conductivity during pulsed plasticity indicate that excess silver interstitials are created with an efficiency of 10−7 fractional concentration per unit strain; these interstitials have a lifetime of 108 jumps. (c) Measurements of the annealing out of excess electrical conductivity of quenched crystals give the divacancy binding energy to be 0.42 eV and the migration energy to be 1.0 eV. The concentration of Schottky defects at high temperatures is estimated to be approximately 0.1%.


Strain Aging Silver Chloride Migration Energy Lower Yield Point Schottky Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Stepanow, Phys. Z. d. Sowjetunion 8, 25 (1935).Google Scholar
  2. 2.
    W. Johnston (private communication).Google Scholar
  3. 3.
    See for example, A. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford, 1953) and H. Conrad & G. Schoeck, Acta Met. 8, 791 (1960).Google Scholar
  4. 4.
    P. Haasen and A. Kelly, Acta Met. 5, 192 (1957).CrossRefGoogle Scholar
  5. 5.
    D. Wilson and B. Russell, Acta Met. 8, 468 (1960).CrossRefGoogle Scholar
  6. 6.
    H. Birnbaum, J. Appl. Phys. 33, 750 (1962).CrossRefGoogle Scholar
  7. 7.
    W. Johnston and J. Gilman, J. Appl. Phys. 30, 129 (1959).CrossRefGoogle Scholar
  8. 8.
    M. N. Kabler, Ph.D. Thesis, Univ. of N. C. (1959); M. G. Miller, Ph.D. Thesis, Univ. of N. C. (1961); M. Kabler, M. Miller, and L. Slifkin (to be published).Google Scholar
  9. 9.
    J. Eshelby, C. Newey, P. Pratt, and A. Lidiard, Phil. Mag. 3, 75 (1958).CrossRefGoogle Scholar
  10. 10.
    See also: F. Bassani and R. Thomson, Phys. Rev. 102, 1264 (1956).CrossRefGoogle Scholar
  11. 11.
    I. Ebert and J. Teltow, Ann. Phys. Leipzig 15, 268 (1955).CrossRefGoogle Scholar
  12. 12.
    J. Hanlon, J. Chem. Phys. 32, 1492 (1960).CrossRefGoogle Scholar
  13. 13.
    R. Reade and D. Martin, J. Appl. Phys. 31, 1965 (1960).CrossRefGoogle Scholar
  14. 14.
    F. Seitz, Advances in Physics 1, 43 (1952).CrossRefGoogle Scholar
  15. 15.
    See, for example, R. Davidge, C. Silverstone, and P. Pratt, Phil. Mag. 4, 985 (1959); and D. Fischbach and A. Nowick, J. Phys. Chem. Solids 5, 302 (1958).CrossRefGoogle Scholar
  16. 16.
    H. Layer, M. S. Thesis, Univ. of N. C. (1962) (to be published).Google Scholar
  17. 17.
    H. Layer, M. Miller, and L. Slifkin, J. Appl. Phys. 33, 478 (1962).CrossRefGoogle Scholar
  18. 18.
    F. Seitz, Rev. Mod. Phys. 23, 328 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • M. N. Kabler
    • 1
    • 2
  • H. Layer
    • 1
  • M. G. Miller
    • 1
    • 3
  • L. Slifkin
    • 1
  1. 1.University of North CarolinaChapel HillUSA
  2. 2.US Naval Research LaboratoryUSA
  3. 3.Clemson CollegeClemsonUSA

Personalised recommendations